NASA CONTRACTOR
REPORT

NASA CR-1284

HAND-PRINTED INPUT
FOR ON-LINE SYSTEMS

bj M. I. Bernstein and H. L. Howell

Prepared by
SYSTEM DEVELOPMENT CORPORATION
Santa Monica, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

JAVAEA G

LOAN COPY: RETURN TO
AFWL (WLIL-2)
KIRTLAND AFB, N MEX

WASHINGTON, D. C.

MARCH 1969

WN ‘g4v) AHVHE!T HO3L



NASA CR-1284
TECH LIBRARY KAFB, NM

MNUNWURD

006050k

HAND-PRINTED INPUT FOR ON-LINE SYSTEMS

By M. I. Bernstein and H. L. Howell

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 12-526 by
SYSTEM DEVELOPMENT CORPORATION
Santa Monica, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — CFSTI price $3.00






\
.1\

I

ABSTRACT

This document describes a program for recognizing
hand-printed information in real time, which provides
on-line computer users with a means of inputting
two~-dimensional information as simply as writing with
pen and paper. The program operates under the Time-
Sharing System on the Q=32 computer at SDC, and uses

a RAND Tablet for input and a CRT display (rear-
projected on the tablet) for output. Each user of the
program builds a unique character dictionary, based

on samples of his own input characters, For each user,
the program currently recognizes about 100 different
characters, which are chosen from a larger alphabet

by the individual user. This document describes how
the recognition program interfaces with the Time-
Sharing System; what functions the program performs in
recognizing hand-drawn input; and how the character
dictionary is constructed and tested., The report
concludes by suggesting that the character recognizer
will realize its greatest potential by being applied
to problems that require free~form (rather than

linear keyboard) input.

iii



FOREWORD

Distribution of this report is provided in the interest of information exchange
and should not be construed as endorsement by NASA of the material presented.
Responsibility for the contents resides with the organization that prepared it.

The work reported herein was monitored by:

Mr, David Kipping

Technical Monitor

NAS 12-526

Electronics Research Center

575 Technology Square
Cambridge, Massachusetts 02139

iv



TABLE OF CONTENTS

6. DESCRIPTION OF PROGRAM SEGMENTS.

6.1 GRID Subroutine. . .
6.2 SAMPLE Subroutine .
6.3 TEST Subroutine . .
6.4 ANALYZER Subroutine.
6.5 STRPKE Subroutine. .
6.6 BOTH Subroutine. . .

SECTION
1. INTRODUCTION « o« o o o o o o o o
2. DATA FLOW AND CONTROL UNDER TSS
3. THE RECOGNIZER PROGRAM . . . . .
3.1 Data Input Requirements . . . .
3.2 Primary (Path) Feature Extraction.
3.3 Shape Feature Extraction . . . .
3.4 Multi-Stroke .Characters and Inter-Stroke
Relationships. + « &« « o« « . .
4, THE DICTIONARY « ¢ o ¢ o o o o
4.1 Dictionary Construction. . . . .
4,2 User Dictionary Manipulation . .
4.3 Dictionary Testing . « « o« « o &
5. CONCLUSIONS AND RECOMMENDATIONS.
6. BIBLIOGRAPHY . « ¢ ¢ ¢« o & « & &«
TABLE OF CONTENTS APPENDIX
1. INTRODUCTION « o« & ¢ « o o o o o«
2, ANALYSIS ¢ ¢ ¢ o o o ¢ o o o o &
3. NOTATION « ¢ o o o o o o o o o »
4, TABLES ¢ ¢« ¢ o ¢ ¢ o & o o o & &
5. PROGRAM DESCRIPTION. . . « « .« .
5.1 Data Flow .« & ¢ ¢ o ¢ o o o o =«
5.2 Response Time. « « « &+ ¢ o o o «

LW

10
10
12
15
15

17

21

21

22

24

25

25
30

31

31
32
32
40
42
44



TABLE OF CONTENTS - APPENDIX (Continued)

SECTION PAGE
6.7 INFLEX SUDrouUtines « o« o o « o o ¢ o o o o o o o o o o s o o o 44
6.8 XPVER SUDTOULITNE o o o o o o o o o o o o s o o = o o o o o o o = 48
6.9 MINPTS Subroutine. « « o & o o o o o o o o o ¢ o o o o » o o o o 48
6.10 QUAD, APUT and DIST. « o o o o « o « o = o « o o « o o o o o« « o« 51
6.11 DEFINE SUDTOULINE: « o « o o o o o o o o o o o o o o o o o o o o 51
6.12 SEARCHD SuUbroULINe o o« o o o 5 o o o o o o o o o o« o o o o o o 51
6.13 SEARCHF SubtoULine o o o o o o o o o 2 o o o o o o o o o o o o 56
6.14 SEARCHS Subroutine o« « o o o 2 o « o o o o o o s o o« o o o o o o 56
6.15 HED8 and DIRQ SubroutineS. « « ¢ & ¢« o o o o ¢ « « o o s o o o & 56
6.16 PURGE, MERGE and @¢PTIMIZE SUBROUTINES:. & o + o o s o o o o o o 56
6.16.1 PURGE Subroutfine o« « v o o 2 o o o o o o ¢ o o s o s « o s o o 61
6.16.2 COMPACT SUDTOULINE o 4 o o o o o o o o o o o o o o s s o s o o « 61
6.16.3 MERGE SUDTOULINE &+ o « o o o o o o o o o o o o o o s s « o o o« » 64
6.16.4 Optimization « o« o o o o o o a s o o o s o s s o s o s o o o o 64
6.16.5 Optimize SUbTOULINE. & ¢ o ¢ o o o o o o « o o o « o « o o o o« 66

6.16.5.1 DTREE SUDroUtine o o o « o o o « o 2 o o » o o o o s s o« o o« o & 66
6.16.5.2 ADDGRPUP SUDTOULINEs o s o o s o s s o o o o = e o o « o o o o » 70
6.16.5.3 GTREE Subroutine o « ¢ o o ¢ o o o o o o o o o o o o o « o o o 72
6.16.5.4 GCHECK SUDTOULINE: « o ¢ o « o o « o o s o s s o o o o o o o o » 72
6.16.5.5 RELINK Subroutine. . . . « « + v « v v 4 v v v e v v v e e v v e 75

ADDENDUM A: GLOSSARY OF MNEMONICS AND ABBREVIATIONS. « « ¢ ¢ o ¢ o ¢ o o o & 78
ADDENDUM B: EXAMPLE OF OPTIMIZE. . « « o o o o o o o s o o o o o o o o o o &« 85

ADDENDUM C: NEW TECHNOLOGY « « o « o o o o o o o o s ¢ o s o o o « o o s o« o« 108

LIST OF FIGURES

FIGURE
1. Examples of Stages of Input Processing « « « o« o o o o o &+ o o & 4
2. Sample Data Points for Hand-Drawn "8" . . o ¢ 2 o ¢ o ¢ o o« o & 9
3. Sample Data Points for Hand-Drawn "3" . . . o o o o o o & o« & & 9
4. Value Assignments for Eight Quantized Directions « + « ¢ « o « & 9
5. Position Relationships Between Strokes of a Multi-

Stroke CharaCter + « o o « o o o o o o o o & s o s o s s o s » 11
6. Dictionary COonsStruCtiOfle « o o o ¢ o o s o o o o o o o o o o o o 13

LIST OF FIGURES - APPENDIX

1. Character Recognizer Routine Relationships . . . « & & & « o . . 26
2. Storage Map for Display Buffer (DB) and Input Memory Buffer (IMB) 33
3. GRID Subroutine « o o o o o o« o o o s o ¢ s o ¢ o o o s o s o o 34
4. Display for SAMPLE Program « + « s o o o s s o s s o o o o o o 35
5. Character Subset Keyboards « o« o« « &+ o &+ ¢ o o o o o = o & & & & 36

vi



LIST OF FIGURES - APPENDIX (Continued)

FIGURE
6. SAMPLE Subroutine « « « o o o 2 o o o o o o o o &
7. Display Buffer Allocation for SAMPLE .« « '« .« . .
8. Display Buffer Allocation for TEST. « . « « « . .
9. TEST Subroutine « « « o « o o » & ¢« o s e o o &
10. ANALYZER Subroutine « « « « .« + & e e s s s e e
11. STROKE Subroutine « « ¢ o o o o o« e e s e e e
12, BATH Subroutine « « + ¢ o « o« o & « e e e e s
13. Segment End-Point Areas . « « . . e s s s e s W
14, Segment Feature Areas o o« « o o & e e s e s e s
15. INFLEX Subroutine . « « o« o ¢ o & e e s s e e
16. XPVER Subroutine. o« « o« « « o o & e s e e e e
17. MINPTS Subroutine « « « « « + « & e e s e o e
18. QUAD (4x, Ay), APUT (x), and DIST (i,j) Subroutines
19. DEFINE Subroutine . « . « . . . . e e s e e e .
20. SEARCHD Subroutine. « ¢« « o « « . e s e o o s
21. Examples of Overlap Computation . e e e e e e
22. SEARCHF Subroutine. « « « + + o & e e e e e s
23. Character Definition Dictionary . « e e e e e
24. SEARCHS Subroutine. « « « « « « & e v e e e e .
25. HED8 (Axy) Subroutine Flow Chart and Table. . . .
26. DIRQ (aXy) Subroutine Flow Chart and Table. . . .
27. PURGE Subroutine. « « « « o o » & “ e e e e e
28. CPMPACT Subroutine. « « + « « . . e e s e s e
29. MERGE Subroutine. « « o o« o o o« o« c e s e e e
30. @PTIMIZE Subroutine + « o« o« o « « e e e s e e W
31. DTREE Subroutine. o« « « o« « o « & e s e e = e
32. ADDGR@PUP Subroutine « « « + o « & e e e e e e
33. GTREE Subroutine. . « « « « o « & e r e e e e
34. GCHECK Subroutine . « « « « « « . e e s e e s
35. RELINK Subroutine « ¢« « o« ¢« o « T T
B-1. Sample Dictionary Before and After Optimization .
B-2. Step 1 of Optimization. . . « . . « s e e e s
B-3. Step 2 of Optimization. . . . . . e s e e e e
B-4. Step 3 of Optimization. . « « « « e e e e e
B-5. Step 4 of Optimization. . . . . . « e e e s e
B-6. Step 5 of Optimization. . . . . & e e s e s e
B-7. Step 6 of Optimization. . « « o« e s s e e e
B~8. Step 7 of Optimization. . « « .« . e e e e e .
B-9. Step 8 of Optimization. . . .« . . o e s e s e
B-10. Step 9 of Optimization. . . « .« . e e e & s e .
B~11, Step 10 of Optimization . . . « . e e e e e s W
B-12. Step 11 of Optimization . . . . . e e s s s e e
B~13. Step 12 of Optimization . . . . . e e e e s e .
B-14. Step 13 of Optimization . . . . . e s e e e 4 W
B-~15. Step 14 of Optimization . . . . . e s e e s e .
B-16, Step 15 of Optimization . . . . . e e e e e s
B-17. Step 16 of Optimization . « « « & e o s s s o
B-18. Step 17 of Optimization « . « « . e e e e e s .
B-19. Step 18 of Optimization . . . « . e 4 e e e e
B-20. Step 19 of Optimization . . « .« . © o e e o a W
B-21. Step 20 of Optimization . . . . . e e ¢ e s 4
B-22, Final Result of Optimization. . . e e e s s o w
vii



i

1. INTRODUCTION

For the past few years, we have been working at the task of producing a program
for the on-line recognition of hand-printed characters in real time. Our main
goal has been to provide the on-line computer user with a more flexible input
mechanism than now exists. Among the primary alms of research was the ability
to recognize at least 100 different characters (chosen from a larger alphabet)
for a given individual. A description of our earlier efforts, as well as other
work in this fileld, can be found in references 1l through 9 in the bibliography.

The method described here is universal in the sense that it epplies the same
general analytical technique to all inputs. It is not universal in the sense
that 1t may not recognize inputs provided by one other than the original dic-
tionary builder. Thus, to obtain optimum performance, each individual user is
required to build a dictionary based upon his own inputs. The system was
designed with this facility, and dictionary bullding has been made as painless
as possible. Though we do not claim that this is the ultimate in on-line
character recognition, we do feel that we have come close to achieving our
principal obJjective--namely a program that will recognize 100 characters for a

glven individual.

The program we have developed operates under the Time-Sharing System on the
AN/FSQ—32 computer at SDC. The hardware required for our recognition system,
in addition to a reasonably fast digital computer, includes a RAND Tablet or
its equivalent for input and a CRT display for output. We have taken advantage
of the fact that the Grafacon 1010A (the commercially available version of the
RAND Tablet) was ported for rear projection, and have built the display and
tablet around a projection system that provides a common input-viewing surface
[(10]. In use, the tablet behaves much like pen and paper. This latter feature
is not essential to the technique, but we feel that it aids materially in
achieving the close coupling desired in interactive man-machine systems.

2. DATA FLOW AND CONTROL UNDER TSS

The hardware for the SDC Time-Sharing System (TSS) consists of two computers,

a PDP-1 and the Q-32, coupled by a core storage (called Input Memory) common

to both. All interactive devices, including our Graphic Tablet Display Console,
are connected to the Q-32 via the PDP-1, which serves solely as an I/O pro-
cessor for these devices. Inputs from the tablet are processed by the PDP-1
CPU on an interrupt basis. Output to the display is handled through an inde-
pendent controller attached directly to the Input Memory. Immediate feedback
is thus provided between the tablet and display so that the user may see his
actions as they occur, by having the PDP-1 store the processed tablet inputs
into Input Memory in the area reserved as the display's buffer.

There are three kinds of feedback provided by the tablet interface program in
the PDP-1. The first is negative--no feedback at all, indicating that input
will not be accepted at that time. Next, there is feedback in the form of a



single point output, updated every 30 msec., indicating that input is allowed.
The point on the display will represent the present position of the stylus on
the tablet as long as the tip switch in the stylus (which we call pen switch)
is open. When the pen switch is closed by pressing the stylus on the tablet
surface, the sampling interval to the PDP-1 is decreased to 4 msec. The PDP-1
then stores the track or path of the pen in the Input Memory display buffer
after first smoothing and filtering out redundant points (these functions are
explained in detail below). To the user it appears as though "ink" were flow-
ing from the tip of the stylus.

The control for allowing input resides with the user's progrem (in this case
the character recognition program) in the Q-32. Communication between the
user's program and the PDP-1 functions is handled through TSS's Dispatcher,
using -reserved words in the Input Memory display buffer. From the Q-32, the
user--in addition to allowing or disallowing input (by specifying a delay time
between % sec and 8 sec after at least one teblet input has occurred)--also
informs the PDP-1 when to notify the Q-32 system that input 1s finished and is
waiting to be processed by the user's program. As a default condition, the
time delay is ignored by the PDP-1l program if the user has filled the allotted
area in the Input Memory display buffer to capacity.

All interactive user programs running under TSS are scheduled on a round robin
basis. The user's program in the Q-32 issues a request for tablet input through
the system's Dispatcher with a Wait in order to remain synchronized with and in
control of the user's actions at the console. When the PDP-1l informs the Q-32
system that tablet inputs are ready, the user program that reguested the input
(only one can do so, because the teblet is acquired as a private device by that
program) is teken from Wait status and is scheduled. The inputs from the tablet
are then directly aveileble on a word-for-word basis from Input Memory to the
user program. In addition to the actual x,y coordinates that constitute the
smoothed and filtered "ink" the user sees on his display, the PDP-1 has kept
count of the number of points rejected for each accepted point in the stroke
or line. This data 1s stored along with the x, y data in the Input Memory
display buffer. Because the user may draw more than one stroke or line, the
beginning of each is uniquely marked.

The Q-32 processes the input from the taeblet as determined by what actions were
valid at the time. The input may be interpreted as a "button" push or as a
stroke in a character, or they may be rejected as invalid for the existing
situation. During that time, the user will get no tablet feedback, thus
informaing him that input will not be accepted. Upon completion of processing,
the display buffer is appropriately updated, the Dispatcher is called request-
ing teblet input, re-instituting the user's feedback, and the Q-32 user program
re-enters Wait status.

This, in essence, describes the data flow and communication capabilities avail-~
able for using the interactive Graphic Tablet Display Console within SDC's



Q-32 Time-Sharing System. Two control programs, SAMPLE, used for dictiomary
building, and TEST, used to test the dictionary in a simulated environment, use
the communication and control features of the system as described above. The
basic difference between them is the interpretation of the input data; this will
become clear when they are discussed below.

3. THE RECOGNIZER PROGRAM

3.1 DATA INPUT REQUIREMENTS

The processing programs involved in the character recognizer do not deal
directly with raw teblet data. Rather, they expect data that has been pre-
processed in a particular way to eliminate redundant points, provide as smooth
a path as possible, and yet retain the appropriate level of detail to permit
extraction of pertinent features.

The functions of smoothing, filtering and keeping count of the rejected points
has been relegated to the PDP-l1 teblet interface program for reasons of effi-
ciency in both time and space. Performing these tasks as each point interrupts
the PDP-1 does not impose an undue burden on that processor and saves a great
deal of buffer space, thus extending the "ink" supply.

Smoothing is required for the very simple reason that the raw data track from
the tablet contains certain lrregularities due to the discrete nature of the
grid, the view angle of the stylus tip (which varies as the pen is rotated in
the hand while writing) and other vagaries of electronics such as poor signal-
to-noise ratio on the low-order bits of the coordinates, particularly the y
coordinate. Figure 1 illustrates rather clearly the value of smoothing when
column "A" is compared with column "B". Colums "C" and "D" of the seme figure
show the reduction 1n the amount of data received versus that output by
filtering using a filter constant of 3. In most cases, it is obvious that the
smoothed, filtered data provides the more desirable inputs for processing. The
numerical data representing column "D" of Figure 1 (along with the associated
point counts) are what the character recognition program processes.

The smoothing algorithm is a rather simple one. An eight-point moving average
of the raw date generates one smoothed data point. To start the process, the
first input point is replicated eight times. An alternative choice would have
been to wait until eight points had been input. The former is logically
simpler, and (because the pen is moving slowly at the beginning of a stroke),
no obvious bias has been noticed because of this choice. Smoothing may be
turned off by setting the appropriate control word in the display buffer.

Filtering and countlng the redundant points is another simple process. It is
applied after the raw data has been smoothed. The filter constant can be set
into one of the display buffer control words, and can have a value between O
and 63. Zero means no filtering. (This is the way the raw data in Figure 1
was obtained.) By trial and error, we have settled on the value of 3 for the



A 8. C. D.

RAW DATA SMOOTHED DATA FILTERED RAW DATA SMOOTHED AND
FILTERED DATA

FIGURE 1. EXAMPLES OF STAGES OF INPUT PROCESSING



filtering constant as one suitable for drawing reascnably small characters
while minimizing the amount of input data to be processed.

The process of filtering itself compares the absolute value of the differences
between the last accepted point and the current point (output by the smoother
if it 1s on or read directly from the teblet if it is off). If either |Ax[ )
or IAy| is greater than or equal to the filter constant, the point is accepted;
otherwise it is rejected and the point count of the last accepted point is
incremented. These point counts are used in (and are critical to) corner
detection as a measure of the stylus velocity along the path. The filtering
process 1s started with the first input point of the stroke. This point is
also uniquely marked to identify it as the beginning of a stroke. All sub-
sequent processing of the tablet inputs takes place in the Q-32.

3.2 PRIMARY (PATH) FEATURE EXTRACTION

The first processing of the stroke information extracts what we shall call
primary or path features. At present these consist of corners, inflection
points, intersections within the stroke, and a corrective procedure for re-
moving small but bothersome "hooks" that occur at the beginning or end of the
stroke. Although all of this processing could be done in one pass of the
stroke data, the program would be extremely complex. Some of the processes
are done in parallel; however, we shall consider them serially for clarity of

exposition.

The data received by the routine is an array of ordered triples that are made
up of the x-coordinate, the y-coordinate and the rejected point count. The
first step }s to convert the coordinate points into discrete headings (one of
thirty-two), thus making the stroke position-independent.

Values assigned to the 32 directions can be thought of either as simple
integers having the value O through 31, or as signed two's complement four-blt
fractions. Thus one can think of the half circle beginning at the zero direc-
tion and rotating clockwise as increasing in value by increments of 1/16, and
decreasing in the counter-clockwise direction by -1/16. In order to remain
consistant with two's complement arithmetic, the value assigned to the direc-
tion half way around from O equals -1. This method permits differencing the
heading using the arithmetic of most computers directly and has the advantage
that no difference can exceed 180° (-1) and that the sign of the difference
indicates the direction of the path's rotation or curvature. The differences
themselves can be thought of either as integers or fractions, since the con-
version is a simple scaling by & power of two. We shall be consistent here
and treat all things concerning headings and differences as fractions.



Simultaneously, the minimum rectangle surrounding the stroke is computed. The
absolute value of the difference of the headings formed by the first three and
the last three points of the stroke (if the stroke area is large enough to
qualify) is tested against a "hook" threshold. If the threshold is exceeded
(the current value is 5/16) the offending point is removed from the stroke,
thus eliminating the "hook".

We have tried several schemes for detecting corners. All have used both local
geometry and velocity. Our best estimate of velocity is the rejected point
count supplied by the filtering program, which 1s actually the inverse of the
velocity, slightly modified by the smoothing algorithm. In order to examine
the local geometry of the stroke, adjacent headings are differenced, and each
difference is associated with the point common tc the two headings. Thus three
points in a straight line would generate a zero difference for the center
point, regardless of direction. In order to determine approximate angular
change without regard to direction of rotation, one need only look at the
sbhsolute value of the difference. In what follows we shall use the notation
Ah to denote this difference, and |Ah| to refer to its absolute value.

The present corner detector marks a point as a corner if either its IAhI is
greater than 11/16 or if lAhi+Ahi+i| (that is, the sum of the current and next
Ah) is greater than 13/16 without examining the local velocity (point count).
Otherwise, a point is marked as a corner if its point count is greater than or
equal to 8, or the sum of its point count and its predecessor's point count is
greater than or egual to 14 and this latter sum is also at least six times
greater than the minimum point count two away (before or after). There are
some involved complexities for those latter cases that determine which of the
two candidates is actually marked as a corner, plus some point relocation that
is done when the filter has 'rounded" a corner, but these are not appropriate
for this discusslion. The parameters used in the above tests were arrived at
empirically after examining a great many samples. Unfortunately, those samples
did not come from a large number of people, but they have worked successfully
for a varied set, including both left- and right-handed people.

It should be noted here that the marking of a point as a corner divides the
stroke into separate parts from which the shape features and inflection points
are extracted separately. If no corners are found in a stroke, the entire
stroke is processed as a unit for extraction of shape features and inflection
points.

Inflection points are determined using the same heading differences described
above. This is done by .summing the Ah's for the entire stroke and noting when
the absolute value of the sum exceeds 5/16. Only after such an occurrence can
an inflection point occur. This limit eliminates spurious inflections intro-
duced by minor wiggles. After the above threshold is exceeded, the maximum
and minimum values of the sum are noted if the difference between successive
pairs of minima and maxima is greater than 3/8. If so, an inflection point



has occurred either at or between the pair. The usuel case is that the event
occurred at the minimum or maximum, but when they are joined by a straight
segment (a series of Ah's equal to zero), the inflection point is taken midway

in this segment.

We have not solved the general problem of finding path intersections efficiently
at this writing. Instead, we look at the sums generated by the inflection

point search and determine if any part of the path qualifies as a loop. Then,
if and only if no inflection point was found in the pert under question, we
perform tests within the general area of the stroke to determine if closure has
occurred. We hope that a general solution to the problem of detecting path
intersections will be more useful in conjunction with shape feature extraction
in improving discrimination among strokes that now prove somewhat troublesome

to handle as special cases.

3.3 SHAPE FEATURE EXTRACTION

Over the past several years, we have tried various methods for extracting fea-
tures describing the "shape" or topology (using the term loosely) of a stroke.
They can be divided into three general classes: local minima and maxima, area
traversal, and curvature measurements. Each has its merits and shortcomings.
When the shortcomings outweighed the merits (as was the case with the local
minime-maxima method), the effort was discarded from further consideration as

a basic method, though we attempted to learn from such failures and retain
some features of the approach that might lead to improvements of other attempts
with other techniques.

The area feature extractor, which has already been documented in earlier reports,
is a case in point. Though the technique as a whole was not entirely satis-
factory because it was sensitive to minor variations in the input that dras-
tically changed the generated description (such as lengthening or shortening

the tail on the input character "a"), it had characteristics we wished to re-
tain in future tries. For instance, it inherently retained the basic geometric
relationsips among the various parts of the stroke, and was insensitive to

minor variations in the amount of curvature in the various parts of the stroke.
In fact, as long as 'faults" such as hooks did not generate corners or inflec-
tion points, they did not perturb the results at all.

On the other hand, the curvature feature was insensitive to lengthening or
shortening "tails", but was always sensitive to minor variations in curvature

if the variation occurred at the separation between two classes of features,
such as a "curve" and a "cup." We had solved the problem of retaining geometric
relationsips between the featurés by adding a feature that described the rela-
tionship of the present feature to the collection of its predecessors. The
details of this extractor appeared in a prior report.



The most recent feature extractor is an amalgamation of area and curvature
techniques. The stroke is segmented into smaller parts at corners and (when we
solve the processing problem) at intersections, but not at inflection points--as
was necessary in the curvature measurement method. Each part is then "described"
using the area feature method with some minor changes, and the whole is tied
together. This is done by geometrically relating the rectangles used to gener-
ate the description for the parts in the same way that the features were
related in the curvature extractor. The variations to this technigque amount to
eliminating the central diamond-shaped area if an inflection point is included
in the stroke part, and marking the inflection point's occurrence instead; if
the part or stroke is simply a straight line, the generated feature string
contains only the end point areas., This latter case is detected when the Ah's
are summed while looking for inflection points. The same procedure permits us
to detect loops that occur at the beginning and/or end of a stroke, and to

treat them separately. To clarify the above, we present two examples: a
hand-drawn eight, and a hand-drawn three.

Figure 2 shows the data points for the input character (the "¢") and indicates
that an inflection point was found (the circled point), plus the area divisions
of the minimum rectangle surrounding the stroke. The feature string produced by
following the path from area to area is 145I2351. The "I" indicates that an
inflection point was encountered in area 5; however, since it was, all refer-
ences to area 5 are delected, thus producing the feature string 14I231. The
deletion of area 5 was decided upon after many samples of strokes were analyzed
for variability, and it was discovered that almost all of the differences were
in the area in which the inflection was placed, plus the relative position of
area 5 with respect to the others. Although not shown in this example, when
the deletlon of area 5 leaves two adjacent features with the same area number,
one of these is also deleted. The overall effect is a decrease in undesirable
discrimination, at the cost of extra processing.

The hand-drawn three shown in Figure 3 illustrates the case where the stroke has
been divided into two parts by the discovery of a corner (the point surrounded
by a square). The rectangle surrounding each part is computed and subdivided
as shown, and the generated feature string is 4123C4123G4. The "C" indicates
that a corner occurred between the two parts; the "G4" at the end shows the
following geometric relationship between the two rectangles: the second part
is immediately below the first. The headings or directions used for geometric
relationships between surrounding rectangles is quantized to one of eight as
shown in Figure 4. The overall effect of this approach is reasonably consis-
tent shape description of parts of a stroke that is insensitive to minor varia-
tions in curvature, while retaining the overall required discrimination and
descriptive content.

3.4 MULTI-STROKE CHARACTERS AND INTER-STROKE RELATTIONSHIPS

Being able to extract the feature content of each stroke only solves half of
the problem for multi-stroke characters. In order not to impose restrictions



FIGURE 2: SAMPLE DATA POINTS FIGURE 3: SAMPLE DATA POINTS
FOR HAND-DRAWN "8" FOR HAND-DRAWN "3"
7 0 1
6 2
5 4 3

FIGURE 4: VALUE ASSIGNMENTS FOR
EIGHT QUANTIZED DIRECTIONS



or constraints upon the user concerning character separation and to make the
recognizer truly position-independent, multi-stroke characters must be dealt
with as a unit. Therefore, we require some additional information about the
relationships of strokes that mske up the character. The method used is the
same as that used to describe the geometrical relationships between the parts
within a stroke. Each successor stroke is related to the collection of its
predecessors by computing the relationship of the appropriate minimum surround-
ing rectangles. A stroke is considered coincident with its predecessor(s) if
the rectangle centers are within a limit of one another, as computed from the
larger of the two. If the coilncidence test fails, the center-to-center
direction 1s computed; on the basis of that direction, the appropriate edges
are compared for nearness (based upon the same computed limit) or overlap. If
this test is successful, the strokes are considered near (indicated by "N");
otherwise they are far (indicated by "F") from one another. The position
relation is composed of the result of these tests plus the center-to-center
direction in the case of "near" and "far" rectangles. In Figure 5, the posi-
tional relation is indicated by -the appropriate letter followed by an arrow
where regquired.

k. THE DICTIONARY

L.l DICTIONARY CONSTRUCTION

As stated above, each user should build a dictionary based upon samples of his
own input characters. This is presently done using the control program called
SAMPLE. 1In the dictionary-bullding mode, only one character at a time is
input, though it may be constructed of as many as 12 strokes. When the user
completes his input (this is indicated by pausing a predetermined amount of
time), the strokes are individually analyzed, that is, a feature string is
produced for each; if the input character is composed of more than one stroke,
the positional relationship between each subsequent stroke and the collection
of all of its predecessors is computed.

The dictionary--as it exlsts--is then searched, stroke by stroke, for a match-
ing description. If a complete match is found for the input, the associated
output character replaces the user's input on the display, thus informing him
that the input was recognized. If no match, or an incamnplete match is made,
the user 1s so informed. He then defines the 1input by appropriately indica-
ting the output character he wanted to associate with the input; alternatively,
he may erase the input and draw another character. By defining the input, the
user causes the program to add the missing stroke information to the dictionary
with the output character appended.

In addition to the feature information, the dictionary contains & recognition

count, set to zero when a new definition is added. Each time a match is made
for & definition, its recognition count is incremented by one.

10



B
NEARNESS
/ TEST AREA
| [
STROKE \ :
SURROUNDING : : SECOND
il STROKE
RECTANGLE |

| CENTER | |

N\ COINCIDENCE
TEST AREA

a. FIRST STROKE

OF AN "A" b. SECOND STROKE ADDED

d. GENERATED POSITION RELATIONSHIPS FOR "A"

STROKE /> NEARNESS
/ T TeST AREA

11

[
|
SURROUNDING [ [
.~ RECTANGLE [ | ™~ SECOND
| | STROKE
CENTER !
M
| |
| |
COINCIDENCE | |
TEST AREA ! |
|| [ |

f. SECOND STROKE ADDED
e. FIRST STROKE

OF AN "H" e owE
S,i S, =F

53: S] + 52 =C
h. GENERATED POSITION RELATIONSHIPS FOR "H"

RECTANGLE
SURROUNDING

/ FIRST & SECOND
STROKES

——THIRD STROKE
c. THIRD STROKE ADDED

RECTANGLE
SURROUNDING
FIRST & SECOND
STROKES

THIRD STROKE

g- THIRD STROKE ADDED

FIGURE 5. POSITION RELATIONSHIPS BETWEEN STROKES OF A MULTI-STROKE CHARACTER



The dictionary minimizes both space and search time, while retaining the essen-
tial stroke relation information. This 1s done by constructing the dictionary
as a tree or set of trees, in which only the legitimate successor strokes are
linked to predecessors. Figure 6 illustrates the dictionary-building process.
In Figure 6, the feature strings generated for the strokes are represented by
drawn shapes, rather than their actual numerical representation. The dotted
arrows indicate the paths that the search routine is allowed to follow.

Figure 6f illustrates the parsimony that this type of dictionary allows,
namely, it contains descriptions of 11 strokes and 9 complete characters with-
out ambiguity.

As constructed by the user, the dictionary contains not only the input char-
acter descriptions and definitions, it also contains implicitly the separation
information required if the user is to be permitted to input more than one
character at a time. This factor is essential for two reasons: First, the
user can input a natural grouping at one time; second, and even more important,
he is not constrained to print his input at some predetermined bounded area.

Errors or embiguities can and do occur, because some characters are proper

subsets of others, and legitimate character pairs appear to the program as

single characters. To resolve this problem, the user must revert to single
character input.

h.2 USER DICTIONARY MANIPULATION

In addition to the obvious abilities to save and restore a dictionary under
user control, the current program permits three other capabilities: purging,
merging, and optimizing multi-stroke character definitions.

Purging permits the user to delete unwanted definitions from the dictionary in
one of two ways. He may delete all definitions for a chosen output character,
or he may purge all definitions whose recognition count is below g threshold
of his choosing. There is no restriction on the number of times the user may
purge a dictionary.

The purging is done as a two-step process that is the same for either kind of
purge-threshold or character. During the first step, every entry in the
dictionary is examined in its logical sequence by beginning with the first
dictionary entry of the first strokes and following all links (explicit and
implied) to their terminal node or leaf. Every entry that meets the purging
requirement is marked as an "intermediste undefined" entry (replacing the
existing character definition entry).

On the second step, a new dictionary is built from only those entries that
terminate at a leaf with a legitimate output character. All chains of entries
that are all "intermediate undefined" are deleted, as long as none are cross-
connected to legitimate output characters. Conceptually, the process is
straightforward, but because the dictionary is not constructed using the stan-
dard technique of an available space list, the actual manipulations become
quite complex.

12



I

a. User Begins Dictionary by Drawing and Defining a "1"

[T e o]

b. User Draws and Defines a "+"

O ]

e ]

d. User Draws ond Defines o "D"

I S

PR S VR e SR

\ rN— 'Ut}'

........ =< ]

f. User has Drawn and Defined, One at a Time, a /", “X",

wen, and on "A"

FIGURE 6. DICTIONARY CONSTRUGTION

13



Merging two dictionaries is a straightforward process. The dictionary that is
to be added is treated as though the input characters were input one at a time,
as in dictionary construction. Each complete entry (sequence of strokes) is
taken one at a time from the incoming dictionary and searched for in the
resident dictionary. If a complete match is found, no new information is

added to the resident dictionary, but the recognition count plus one of the
"new" characters is added to the resident definition. When a conflict arises--
that is, when the feature strings from both dictionaries agree but the output
characters differ--the user must make a choice among three alternatives: (1)
He may choose to use the resident dictionary definition; (2) the definition
from the incoming dictionary to replace the resident definition, or (3) neither.
If he chooses neither, the resident definition is set to "intermediate
undefined”. If any instance of this latter occurs, the merge program calls the
second step of the purge routine to clean up the dictionary.

The optimization process is a way of recovering space in the dictionary by
cross-linking definitions of multi-stroke characters in a way that eliminates
redundant successor stroke chains that are exactly alike. This process cannot
easily be done during dictionary construction without adding a great deal more
structure to the present form of the dictionary. The price for doing so would
not only be additional space, but additional time during searching.

Optimization is done, in a sense, by turning the dictionary inside out. That
is, the dictionary must be examined in reverse order: +the last stroke in a
chain and its attached definition are examined first, and all last strokes at
the same level are searched for an exact match. If such a match is found,
obviously one of the entries is redundant and may be removed by linking the two
predecessors to the same successor. Before it is actually removed, the chain
1s searched backwards to determine if the redundancy continues. If such is the
case, an entire chain may be removed, as long as no definitions are destroyed
in the process and no ambiguities are created.

The process continues through each level of successor strokes until no further
redundancies can be removed. In actual practice, the dictionary is not turned
inside out, but rather it is searched in a forward direction and the entries
grouped into classes which have the same number of strokes terminating in a
leaf. These groups are then processed by looking first for matching defini-
tions and then for matching feature strings. Because each definition is not
necessarily a simple chain, great care is taken that no destruction or ambi-
guity is created; therefore, if any deletion 1s in the slightest way gquestion-
able, no action is teken. In practice, the optimizer has worked exceedingly
well and actually created new definitions by legitimately linking together
combinations that did not appear as samples during dictionary construction.

14



L.3 DICTIONARY TESTING

The present. implementation permits the user to test his character dictionary in
a simulated use mode under control of a routine called TEST. In order to better
approximate a usage environment, this routine allows the simple editing func-
tions of erasure (one or a group of characters), and single and multiple char-
acter replacement. It does not provide the ability to insert and delete,
primarily because it is not line- and character-space-oriented, but rather is
oriented toward unconstrained two-dimensional input. Thus the user is free to
draw any character in any position at any time. Because two-dimensional nota-
tions utilize character size as well as position (for reasons of amesthetics if
not meaning), the character output by the program matches the user's input in
both size and aspect ratio as closely as is physically possible.

When testing a dictionary, the user is not constrained to writing one character
at a time. He may input as long a character string as his "ink" supply will
permit. This 1s the only way in which the inherent character separation
mechanism of the dictionary can be tested. 1In this mode, the dictionary's
recognition counts are incremented for each successful match as they are in
the SAMPLE routine.

At present, if recognition is not acceptable, we have no way of using the

test inputs for improving the dictionary. Though the recognition level may
appear acceptable in the dictionary-building mode, it appears that one's
actions when printing a single character differ from when he is printing a
string of characters. We are planning on changing the dictionary construction
progrem to accept a string of characters as well as single characters, and--in
addition--to permit retrieval of input from the testing routine for dictimary
additions. This should speed dictionary construction as well as improve its
content.

5. CONCLUSIONS AND RECOMMENDATIONS

Given the appropriate input hardware, computer, and system interfaces, on-line
character recognition in real time is feasible. That it can be made operation-
ally successful when used by randomly chosen individuals has yet to be proven.
We have constructed dictionaries of a large number of characters (approximately
100) for individuals actively engaged on this project, and have had acceptably
high recognition rates. On the other hand, we have not specifically tested the
recognizer to ascertain its maximum level of attainment, nor have we tried to
have someone unfaemiliar with the effort bulld and test a dictionary under test
conditions. Demonstrations of the system for a number of visitors have
indicated that some learning period is required before an individual becomes
thoroughly comfortable with the hardware, the program, and the variability of
the Time~Sharing System's response time.

The economics of such a capability is another area that has only been cursorily
examined. It is obvious that the cost of the hardware alone precludes the use
of character recognition as a simple replacement for a keyboard console. This

15



is true from several points of view., First, the dollar costs of the two kinds
of terminals and their interface requirements make the keyboard console more
immediately attractive. Secondly, user experience and capability (given that
both devices are doing the same Job) would make the keyboard conscle the more
desirable for most people. Therefore, the payoff (if one exists) of on=line
character recognition lies in those areas where input is either impossible or
extremely difficult to achieve through a keyboard console. This is the problem
area to which we have addressed ourselves, and this is the kind of capability
we believe we have attained with the present version of the recognizer, Namely,
for a given individual, we can provide a larger character set tailored to his
needs than that available through a keyboard--that is, the character set is
made up of his own choices from a much larger set. More importantly, for the
first time the position- and size-independent nature of the recognizer permits
a user to input complex two-dimensional notations of practically any disci=-
pline for computer processing. This job cannot be done easily by any other
method. It is here that future activity must taeke place in the development

of systems and applications that require free-form, two-~dimensional character
input.

Our recognizer is far from perfect, and we intend to continue improvements and
explorations into other techniques and approaches, as well as attempting to
make meaningful use of our current capability in the near future.

16



6. BIBLIOGRAPHY

1. Bernstein, M.I. 'Computer Recognition of On-Line Hand-Written Characters."
RM-3753-ARPA, The RAND Corporation, Santa Monica, California. October 196kL.

2. ., "An On-Line System for Utilizing Hand-Printed Input"
TM-3052. System Development Corporation, Santa Monica, California. July 1966.
3. . "A Method for Recognizing Hand-Printed Characters in

Real Time" Proceedings of the IEEE Pattern Recognition Workshop - 1966. (In

press).

L, . "An On-Line System for Utilizing Hand-Printed Input: A
Progress Report" TM-3052/001, System Development Corporation, Santa Monica,

California. December 1967.

5. Brown, R. M. "On-Line Computer Recognition of Hand Printed Characters."
IEEE Transactions on Electronic Computers. December 1964, pp. T50-752.

6. Dimond, T. L. "Devices for Reading Hand Written Characters." Proceedings
.of the Eastern Joint Computer Conference. December 1957, pp. 232-23T.

T. Kuhl, F. "Classification and Recognition of Hand-Printed Characters."
IEEE International Conference Record. Vol. II, Part k4, 1963,

8. Teitleman, W. "New Methods for Real-Time Recognition of Hend-Drawn
Characters." Report No. 1015 Bolt Beranek and Newman, Cambridge, Massachusetts.
June 1963.

9. Nugent, W. R. and L. F. Buckland. "Improved Text Editing Using Hand-
Drawvn Commands and Data: A Technique for RAND Tablet and CRT Display."

Second Quarterly Progress Report. Inforonics, Boston, Massachusetts.

November 1966.

10. Gallenson, L. "A Graphic Tablet Display Console for use Under Time-
Sharing." Proceedings of the Fall Joint Computer Conference, Vol. 31.

Ansheim, Celifornia. November 1967.

17






APPENDIX

DETAILED DESCRIPTION OF THE RECOGNIZER PROGRAM

This document describes a program for recognizing hand-
printed information in real time. This program provides
on-line computer users with a means for inputting two-
dimensional information into a machine as simply as

writing with pen and paper. Operating under the Time-
Sharing System on the Q-32 computer at SDC, the program
uses a RAND Tablet for input and a CRT display (rear-
projected on the tablet) for output. Each user of the
program builds a unique character dictionary, based on
samples of his own input characters. For each user, the
program currently recognizes about 100 different characters,
which are chosen from a larger character set by the
individual user. This document describes in detail the
various segments of the character recognition program and
their interrelationships. It also includes program flow
charts for each of the segments; a list of special notation
used; an explanation of tables used by the program; a
glossary of mnemonics and abbreviations used; and an
example of dictionary optimization.

19






1. INTRODUCTION

The following is a detailed description of the character recognition program

as of February 1968. The program described runs under the SDC Time-Sharing
System (TSS) on the Q=32 computer. The description has been made as machine-
independent as possible, but is not necessarily independent of the system,
though one need not be familiar with the intricacies of TSS to understand the
program description., It is sufficient to know that all interactive I/O is
carried on through a PDP-1 computer semi-independently from the main processor,
the Q-32, These two computers communicate through a 16,000 (L48-bit) word

core bank (called Input Memory) that is directly addressable by both computers.
A block of storage (1024 words) has been reserved in this core bank for refreshing
the CRT display that is an integral part of the Graphic Tablet Display (GTD)
console,

A special interface program has been included in the PDP-1 for the RAND Tablet,
This program, called GRID, is the only one described below that operates in
the PDP-1; all others operate in the Q=32 under TSS,

2. ANALYSIS

We have yet to institute formal testing of the character recognizer, although
several people have successfully used the program during investigation of
applications for the technique. The primary reason for not formally testing
the recognizer is its continuous state of change. Corner detection has been
improved, but perfection has not been attained, Intersections (cross-overs)
within a stroke are now found and have proven valuable in eliminating many of
the ambiguities that bothered us earlier. The present cross=over computation
is time-consuming and we believe a better way can be found. The feature
extraction method itself has been changed markedly and the resulting improvement
in performance has shown that effort to be worthwhile. All of these things
delay testing, but the major problem in testing a program such as this is
designing a meaningful test. What precisely should be tested and to whose
satisfaction? Should a random sample of people be chosen to build a dictionary
of some chosen subset of characters? What restrictions should be placed on
dictionary building, total number of samples, maximum number per character?
What 1is acceptable performance and to whom? How should the sublects be
motivated, toward high individual performance or toward "beating" the program?
Who should do the testing and under what circumstances? What can be learned
from such a test? We feel that it reasonable to have answers to these and
other questions before launching a testing program for the present version of
the character recognizer or its successors.

Though as yet not rigorously demonstrated, the original goals of this project--

we believe--have been met. Namely, the program recognizes at least 100 charac-
ters for a given individual, though probably not for any individual chosen at

21



random. We have implemented ways of manipulating the dictionary of character
definitions that allow purging unwanted portions of the dictionary, optimizing
definitions for multi-stroke characters, and merging dictionaries that were
created separately. As yet, we have not found a way of optimizing the multiple
definitions for single-stroke characters that does not complicate the dictionary
structure to a degree that makes new definition entry and searching exceedingly
time~consuming.

3. NOTATION

Because there exists little, if any, standard notation in either the “ield
of programming or character recognition, we have invented notation where we
felt it lent both brevity and clarity to the presented material, and have
stayed as close as possible to "accepted" representation in all other cases.

Xy or Represent an ordered pair of coordinates; usually
provided by the input. p is used when it will not
cause ambiguity. When operations or functions are
applied to p, they are applied fully to both x and
¥+ Both representations may be subscripted, either
to denote a particular order in the sequence of
coordinates that make up a stroke, or to identify
a unique pair,

dxy or AXy or exy Represent the signed difference between two pairs

of coordinates, xl—xz, yl-y2. When tests or

operations are performed on individual members of
the pair, they are separated in the form Ax and Ay.

h Represents the heading--as computed by the function
DIRQ (Axy)--between two points. The values are
treated as signed two's complement fractions for
computational purposes.

Ah The signed difference between two headings, h1 and
h2. The sign indicates the direction of rotation

(minus for counter-clockwise and plus for clock-wise),
and the magnitude represents the amount of directional
change. Note that since the computation is done on
signed two's complement fractions, the largest

change that can occur is 1800, indicated by a =1

22



[1¢2]

£

Min and Max

o
=~
—

Size (A)

Stands for stroke. In our program, a stroke is made
up of the ordered set of coordinates, p, input to
the program between the sequence of pen switch on
and pen switch off,

Stands for feature. Usually it is only a portion
of a stroke.

Used in their usual mathematical meaning. When
either is applied to a stroke, S, the x and y
coordinates are treated indepenfently. Therefore,
min (pi) means min (xi) and min (yi); max (pi) has

a similar meaning.

The minimum rectangle surrounding the set of points,
Z, which may be a stroke, S, or a subset of the
stroke. Usually that subset that constitutes =
feature £(2Z) is obtained by computing Min(Z) and
Max(Z) and is a pair of ordered pairs (xmin’y

)s

)y

min
(x I'Ng
max’ max

The center of the minimum rectangle R(Z). It is
an ordered pair x,y. It is computed as 1/2(xml +x ),

in "max
1/2(y , +y ).

min Ymax

An ordered pair of differences, Axy, specifying the
size of an entity A, It is usually computed from
R(A). The notation used in the flow charts is

oL 3 = -
Size (R(A)). It is computed as axy X ax~*min®

Ay=y  =¥_. . DNote that both ax and Ay are >O.

max “min
Stands for character. Ch¢ is used to specify an
output character, and may only be a legitimate
member of the output character set (the set from
which the user defines his input). Chl is used
to specify an input character, and is a collection
of from one to n strokes, (SO, 8, "'Sn)'

Represents output from the ANALYZER routine other

than a Ch¥, Five values have been used. They
are:

0, = a stroke with too many features or (in the
SAMPLE routine) a Chl with too many strokes.

23



Q
1l

a stroke or character not found in the
dictionary; thus, an undefined character.

0, = a stroke or character in the dictionary that
ends at an intermediate node, has no Ch
attached, and is, therefore, an intermediate,
undefined character. For example, if the
first sample provided to SAMPLE were a four-
stroke M and the dictionary were empty, the

first three strokes entered would have a 02

appended to them; the fourth stroke would
have the chf ™" appended as its definition.

0_ = end of strokes or vacuous stroke,

Oh = an invalid stroke, defined as one for which

Ax+Ly >20 for any adjacent pair, Pis Pryqt
05 = an empty position used for initialization
purposes,
A(S) Represents the ANALYZER output for S. A(S) may have

0 as an intermed%ate value, but its final value is
always either Ch* or O.

b, TABLES

Various tables are referred to in the following description (both in the prose
and in the flow charts). In the context used here, each table is made up of
entries and each entry is referred to using the indexed table name. Each
entry may be made up of items. These items are referred to using the item
names, and every item in the same entry has the same index as that entry.

In tables whose entries contain items, a reference to an entry implies the
collection of items in that entry. For example, in table GRPUP, each entry
contains the two items LSort and LGroup., The statement "Clear GROUPi" means

that both LSorti and LGroup:.L are set to zero. In addition, the statement

"Clear Table GROUP" means that both items LSort and LGroup in every entry
are set to zero.

Table 1 is a list of the tables used in this program. It includes the names
of the items in each table entry and the number of entries in each table. In
order to conserve core space, the table S@RT overlays DB, and GRAUP overlays
PTS. This causes no conflict since the program is nct interactive when those
tables (S@PRT and GRPUP) are in use.

24



Figure 1, vhich shows the relationship between the various routines of the
recognition program, also contains the list of tables that each routine uses,
and--following the table name in parentheses--the indices used by that routine
(if any) to refer to the table entries,

Table 1, Tables, Entries, and Items Used in the Recognition Process

Table (Entry) Name Items No. of Entries
IMB XY sM,C 102k
DB X,V 3M,C © 102k
PTS X,Y,I,Ct,h, h (Q overlays Ct 300
in XPVER)
STRK F,E,G,A(s),D,R(8),R(S),R(F) 15
DICT F,E,G,Def,Re,NLink,SLink 512
DICTE DEQ,DGroup,DGLink ,DMark ,DT® 512
DICT* F¥ E¥ G¥*,Def* Re¥,NLink*,SLink* 512
S@RT SPRTL,SERTR 1024 overlays DB
LEVEL LThis,LLast 15
GROYP Ch,GChain,GNLink,GSLink 150 overlays PTS
LTAB LSort (LGroup 15
ATAB AI,Abeg 5
CTAB CI,Cbeg,Cend 10
5. PROGRAM DESCRIPTION
5.1 DATA FLOW

Ignoring those portions of the implemented program that are used for testing
and debugging, we shall describe the sequence of events that take place during
the execution of the program. The flow of data through the system, including
both input data and control signals, will be described.

The over-all functioning of the system involves three hardware units, plus

the software of the time-sharing system. The three hardware units are:

(1) the PDP~1 computer, which interfaces and buffers all interactive input

and output; (2) the Input Memory, & 16 K core storage module of 48-bit words
that is directly addressable by both the PDP-1 and Q-32 computers; and (3) the
Q-32 computer, a large (65K L8~bit word), fast (2.5-usec cycle time), general-
purpose digital computer on which TSS runs.

The Input Memory can be directly read by an objJect program running under the
Time-Sharing System in the Q-32, but only the TSS supervisor may write in
Input Memory. Because there are no user programs running in the PDP=1l, there
are no restrictions on its use of Input Memory. (Note that GRID is considered
to be a system program, not a user program.)

25




TEST SAMPLE HERGE PURGE PPTIMIZE
DB DB DICT(3,8) DICT(d,t,k pIcT(t)
B hodi:] pIcT*(2) pIcT#(d,K) DICTE(t,x)
STRK LEVEL(X) Lran(e)
SERT(c,p)
ANALYZER DEFINE CEMPACT ADDGROUE GIREE
STRK(m,x) STRK(m) pIcT{d,k) DIC‘I'(t(:) : crpup(g)
DICTE(t
pIcT(d) pIcT(d,t) DpICTE(k) croUBle) LEVEL(2)
SEARCHD GCHECK RELINK
STRK(m) DICE{p,t.c) DICT(p,c,i)
DICTE(p,t,1) DICTE(p,c)
LEVEL(2) GROUP(c,g)
GROUP )g, 4 42,t)
BATH l DIRQ l SEARCHF SEARCHS
ps(p.a) pICT(d) prer{d)

STRK(m) STRK(m) STRK(m)

THFLEX
PIS(p,a)
STRK(m)

MINPTS l APUT ]

PTS(psd,k)
CcTAB(c)

Figure 1. Character Recognizer Routine Relationships

26

e e v e T s e moees g ey g [



The Graphic Tablet Display Cansole, around which this program is constructed,
interfaces with the above hardware as follows: the RAND Tablet (Grafacon
1010A) used for input is connected to the PDP-1 through a hardware interface.
Each time an input is ready at that interface, the PDP-1 is interrupted.

These interrupts occur at two different rates: every 30 ms when the tablet's
pen switch is off, and every I ms when it is on. This pen switch on rate is
variable between 1 ms and 16 ms. The l-ms rate cannot be handled by the PDP-1;
samples greater than 4 ms apart would not provide adequate data.

The CRT display for the console is directly connected to Input Memory through
another hardware interface. A block of 1024 words of Input Memory is reserved
in a fixed place for the refresh buffer of the display. The interface reads
from this buffer and "paints" the contents on the display (continuously) at

a reate of approximately 32 frames per second. The display refresh may be
turned on end off manually. When on, the contents of the 102k-word buffer

are shown on the display without regard to the condition of other parts of

the system.

To start the character recognition program, it is loaded for execution under
TSS viae a teletype console in the same way as any other user's program. The
program then queries the user as to his intent. For purposes of discussion,
assume he wishes to use the tablet for input. He indicates this intent.

The program® (running in the Q-32 under TSS) then requests that the tablet
(in reality, the GRID program of the PDP-1, which is a system routine, not

a user program) be attached to this user as a private device. This insures
that all inputs from the tablet are directed only to the user's program.

The GRID program at this point is most likely to have SW1 set to IGN (see
Figure 2), though it may have been left set to TB, but that will not affect
program execution. The program then generates a display image in

Q-32 core consisting of three pushbuttons, labeled "DRAW", "SAMPLE", and "TEST."
Only the latter two concern us here, This image block also contains the
appropriate control words to set the GRID program for use--that is, to set
SWl to TB and assign the first relative location in the buffer where GRID may
store its inputs. This block of Q-32 core (which we shall refer to as DB) is
transferred to the Input Memory display buffer (which we shall call IMB) by a
call to the TSS Supervisor. Vhen TSS returns control to the user's program,
it then requests input from GRID and goes into "wait" status through another
supervisor call, This means that the object program in the Q-32 will not be
run agein until the GRID program informs the Q-32 that input has been completed
and it is giving up control.

With GRID in control, the user now positions his reflected pen position spot
over the "SAMPLE" Button and presses hard enough to turn the pen switch on;

#This routine is not part of the recognition progrem itself, and thus is not
documented here.

27




he then releases the pressure and the switch goes off, GRID has placed the
input points in IMB, so that they are now a part of the display image. The
Q-32 only allows space for one input point by GRID. VWhen it finds that the
buffer is full, it calls TSS to take the user out of "wait" status; GRID then
essentially goes to wait status itself. (If there were more space in IMB,
control would have been returned after a time delay on pen up of 1/k sec.)

The user is informed that control has returned to the Q-32 by the lack of

the moving spot reflecting his current pen position, Note that it is possible
to enable GRID to accept inputs without putting the Q-32 program into "wait"
status, but we have not tried this, even accidentally. If this were done, the
two programs (GRID and the user's program in the Q-32) could get out of
synchronization and both end up waiting for each other, thus effectively killing
the progran.

The Time-Sharing System next takes the user's Q-32 program out of "wait" status.
The program reads the pen input from Input Memory, decodes the coordinates

in terms of button position, and either rejects or accepts them, If the input
is rejected, the program simply goes back to the beginning, rewrites Input
Memory, calls GRID and waits. If the inputs are accepted, the program named

in the button pushed (in this case, SAMPLE) is called and control passed to

it.

SAMPLE generates its initial frame in DB. Having divided up the buffer block
appropriately, it sets the time delay (TD) to 2 seconds, turns the smoothing

flapg (SMFLG) on, calls the supervisor to write DB into IMB, calls GRID, and
goes into "wait" status.

The user next sees a new display. He may then push a button to change the
keyboard displayed, or draw a character in the writing area., GRID reacts

the same way as above. Assume that the user has drawn a character, say a "|".
The user should then wait for some response from the Q-32 progrsm to show on
the display before he proceeds., If he inadvertently starts to draw or push

a button before GRID has given up control, he will add information to the input
that he has not intended and may-~-as a result--unknowingly add a meaningless
character definition to the dictionary. When control is returned to SAMPLE
by the system, it checks the validity of the input as a function of both the
setting of CHSW, and the position of the initial and final coordinates of

the first input stroke. (A stroke is defined as 21l of the input occurring
between pern switch on and pen switch off).

Finding a valid stroke, SAMPLE calls ANALYZER. The stroke is analyzed and the
resultant feature string searched for in the dictionary. Hote that when SAMPLE
is in control, ANALYZER processes all strokes before returning, on the assumption
that all of the input belongs to one character. Since the user's dictionary

is empty, the input will not be found, SAMPLE adds the special character "a"

28




b

to the display image, relocates the INKORG so that the inputs will not be erased,
sets the CHSW to U, writes DB in the IMB, calls GRID and waits. The user must
now "push" one of several buttons. If he draws another character or pushes

the wrong button, his input will be erased and the program will wait for another
input.

After completing the dictionary, the user makes an input at coordinate 0,0.
This, in essence, causes SAMPLE to return control to the program that called
it-~-the control program of three pushbuttons. If the user were to make an
input at 0,0 in this control program, he would return control to the teletype.

The difference between SAMPLE and TEST is that there are no invalid inputs
to TEST. Multi-stroke inputs are not treated as a single character.

The ability to erase or replace an output character from the display is not
crucial to the objectives of the TEST. Its main function is to test the user-
constructed dictionary. Replacement and erasure were incorporated to provide
a more realistic usage environment, and to create a better demonstration

‘vehicle. Generating an output character of the same size and at the same

position as the input character aids in creating the proper atmosphere. These
capabilities were added to TEST in order to solve some of the known problems
that will occur when the character recognizer is used as a tool for an actual
problem solution.

All of the information concerning output character position, size, and location
in the output buffer is placed in DLIST, which is a simple linked list, external
to the actual buffer. DLIST could have been implemented in several ways., The
linked list was a design choice,

If the user then pushes "TEST", control will be turned over to the TEST program.,
TEST sets up DB in two portions: (1) a simple linked list to minimize wasted
space in displaying arbitrary characters in 5 x 7 dot matrix form, and (2) a
block reserved for "ink".

Assume that the user draws

CAT

This takes five strokes. When GRID returns control to TEST, the inputs are
moved from IMB to DB, and ANALYZER is called. ANALYZER returns control to

TEST if one of several events has occurred: (1) all of the strokes in DB

have been processed; (2) the matching feature string in the dictionary has

no successor stroke appended to it; (3) the next stroke processed does not match
any of the successor strokes or it cannot match a first stroke; (4) the input
has too many features and is thus considered a "scrub" or erasure, or it has

29



a noisy point and is considered invalid. One of the results of this kind of
interactive control is that a non-recognized stroke can change the "meaning"

of the remaining strokes from that intended. ZEach time ANALYZER returns control
to TEST, TEST adds or deletes characters in DB; only when all strokes are
processed does the result appear on the user's display, replacing his hand-

drawn input. If all goes well, the user will see ;™. % 1 appear at once on

=

the display, although each character was placed in DB as it was recognized and
returned by ANALYZER.

To illustrate what can happen if a stroke is not found, assume that the user
draws the following: c:

a
=

on the tablet in the order,C,},—,=, ), and the ANALYZER could not find the
"A" of the "A" in the dictionary. The user would see either

* or

.
%
i
wile §
H

.
ae
b

depending on where the center of the "\" is with respect to the two strokes
that are not teken as an "=". The first of these two illustrations shows the
most likely case,

5.2 RESPONSE TIME

We have been able to provide instantaneous response in the one criticel area
required--namely, feedback from pen inputs to the display so that "ink" flows
from the "pen" in real time.

Response time for the user upon completion of input is a function of many
variables. Naturally, the more interactive users there are on the system,

the longer “he delays. In particular, the more people using tape and disc,
the longer the delays. Also, the more input there is from the tablet, the
longer ere the potential delays. The effect of this factor is hard to measure
because of the other variables, but if the processing takes more than one
guantum of interactive user time (currently about 600 ms), the user is swapped
out and is at the bottom of the interactive queue for one cycle,

30



In general, when there are less than 20 other users on the system, response
is acceptable (though not instantaneous). When there are more than 25 users
on the system, response is slow enough to be annoying; when there are more
than 30 users on, response can become intolerable.

If the SDC Time-Sharing System had provisions for priorities among the inter-

active users, some of these annoyances could be lessened, but it doesn't and
so from time to time we will be annoyed.

6. DESCRIPTION OF PROGRAM SEGMENTS

6.1 GRID SUBROUTINE

GRID is a program that runs on the PDP-1 and provides the interface between
the RAND Tablet and the Q-32 Time=-Sharing System,

All communication between GRID and the calling program takes place via the
Input Memory Buffer (IMB), The calling program supplies the variables

(sMFlg, TD, F and INKLOC) in the control words and GRID places the tablet input
data (ink) in the buffer beginning at the location specified in INKLOC. The
format of these inputs is shown in Figure 2,

A flow chart of the GRID subroutine is shown in Figure 3. It is not essential
that this routine start with SWI at IGN, since the time-out on TD guarantees
that SWI cannot remain indefinitely in the TB position if any inputs have been
made, regardless of the state of the Q-32 program. Note that the PDP-1 is
interrupted at two different intervals: at L-ms intervals when psw (pen switch)
is on, and at 30-ms intervals vhen psw is off,

SW2 is set when psvw is first detected. This saves both time and space,
because of the way the PDP-l reads Input Memory. The smoothing algorithm
(enabled when SW2 is set to "on") merely replaces the oldest xy with the one
just read, then computes the average xy as output. The index J is operated
as a ring counter, modulo 8.

The filter factor F is another of the variables supplied by the calling program.
A value of 3 is used for the filter. It was arrived at empirically for drawing
very small characters. Ns 1s the number of strokes input. Until recently,

Ns has not been implemented properly, thus it is used only by time-out testing
in GRID and not by the Q=32 routines. Another function that could have been
included, had space been gvailable (time was no problem), is the computation

of the minimum rectangle surrounding each stroke, R(S). This would have saved
some time in the Q-32 programs, at the cost of buffer space in the INK area.

31



6.2 SAMPLE SUBROUTINE

The SAMPLE subroutine is used to build and test dictionaries is a one-character-
at-a=-time mode. This program allows only one action at a time=~drawing a
character (multi-stroke characters are allowed) or pushing a button.

Figure L4 shows a layout of the display the user sees when this program is
called. The user can then select one of five keyboards. The five keyboards
contain (1) digits, brackets and relationals; (2) upper-case Roman letters;
(3) lower-case Roman letters; (L) punctuation and special marks; (5) Greek
letters. The keyboards are shown in Figure 5 as they appear to the user.
The maximum number of characters per keyboard is 26,

A flow chart of the SAMPLE subroutine is shown in Figure 6. Those parts of

the flow chart concerned with the detailed control of the Display Buffer indicate
when various strokes are left and when they are erased, The buffer is allocated
as shown in Figure 7.

Communication between SAMPLE, ANALYZER, and DEFINE is through the inputs in
the DB, the STRK Table, and a set of standard global communication registers

plus, of course, the computer's accumulator.

When an input is found in the dictionary as a defined character, the output
character replaces the input at the same place on the display at approximately
the same size. If the input is not defined, it is permitted to remain and

one of two special characters, "a" or "2", is output at the ILPC (a position
on the display surface) (see Figure 2),

The CALL GRID AND WAIT is a Time-Sharing System dispatcher call. The call could
be given without a wait, but there is nothing that needs to be done in the interval;
also synchronization between the two prosrams would be more difficult.

Although not shown in Figure 6, there is a small master program to which SAMPLE

and TEST (see below) exit when the input stroke is found to be on the 0,0
coordinate of the tablet.

6.3 TEST SUBROUTINE

TEST allows the user to test a dictionary in a multi-character, interactive
mode, In addition, it provides two editing features: replacement of an
existing character with an input, and erasure of one or many characters with
one scrub., A flow chart of the subroutine is shown in Figure 9.

The mode flag is set to "test" so that ANALYZER does not assume that all of
the input strokes constitute one character.

The Display Buffer for TEST is organized as shown in Figure 8,

32



Typical Display
*Word Inserted
by INK

Byte
Location 0 1 2 '3k 6
0 F | SMFLG Ns
1
2
INKLOC X M C
1023 TB Location TD INKLOC
Figure 2. Storage Mep for Display Buffer (DB) and Input Memory Buffer (IMB)

33



| RAND Teblet Interrupt |

[Read Tablet (psw,x,¥) ]

- T
Yes no

& }'333 rIo
r Is SMflg on? J !
{ {

SWL

<& scacsdule Waiting Program

-+ IGN

D -+ 7Th

Figure 3.

lﬂz_-* off [

SW2 + on
X7 XYy ees Xy
0+ 3

34

l Return ]

GRID Subroutine

Is psw on? —l
i
yes
osre | I Return [ Ws+l + Ns @
@ ! 8TD' - TD*¥
D ‘ on off
R SWl » TB \
] i * INKL@C Xy >xy | Xy +Xy ]
e
\} ] 1/8 g xyj > XY,
T {J+#1) and 7 + 3
yes
SW1 -+ INK
0 > D, Is lxc-xp[ or ch-ypl > F?
INKLGC - i T
R S yes
YoLov mpRE XYM = 1 > LB,
. --:;ﬂ.w_Q_fr_. oy, > DB
C ac 0+C Xy o IMB,
: 2 c i
i+l + 3
@ i+l 1 Xyc + }qu
. Is 1 = enqd? i+l =+ i
: lj
‘ Is i = end?




Button Positions (XBs)

Keyboard Button Area

\

Keyboard

@ @

7S

@ @ @ @ @
@ @ Q@ & ¢ 3 @

v v
® @ @ @ @
@ @ ® @ @

P

®
®

L ILOC

Change .
Function

BUttons  muttons
(FBs)

3 {"“ Clear

PG R@r- Redefine

Writing

= 7 Area

Figure h,

Display for SAMPLE Program

35

LR T




e. Greek letters (and other special marks)

Figure 5. Character Subset Keyboards

36



—

Generate FBs, KCBs in DB
KBs origin + xB¢
Chg origin + $CE
Ink origin -+ BINK, INK@RG
CHSW * N

@ lGenerate KBa(n) et KBP in DB l

TD, SMfig,F,INK@RG -+ DB Control Wds

0 = DBryrgrc, 1023
B

o, 1023 * T, 1023
Call GRID and Wait

IMB1ykgRG, INKLAC — DCINKPRG, INKLGC

Is 8y on 0, 0?

T T
yes no
no yes

>
KCBNO n

D L u R

Is S, on an FB? Is S, on an FB? 1s S on FB(Clea.r)
Q J Q

T T
}’T n|o no
|Is FB = Redefine?l ‘ ‘ LIs Sy on FB(Redefine I
yes no

Is Sy in Writing Area? -
SAl)
CHSW =+ R A yis @ | Is S, on a KBT |

I CHSW + N yes 26
Enter ANALYZER

Clear Ch¢
2,
Is ﬁ(s) a Ch”?
1 | Enter DEFINE

no yes
[ T
Ch™ = DBy, at R(Ch™)
1 2 3 0,k BINK * INKBRG

\ CHSW + D

| rem ~ cn] [ rar =+ o] "HO" + DBy et ILAC
BINK * INK@RG

BINK + INK@RG

i

s
Ch" + DBﬂCH et ILGC
CHSW + U

INKLPC + INK@RG

{

Figure 6, SAMPLE Subroutine

37




0 Control Word ]
1 Permanent Buttons
(FBs and KCRs)
Keyboard Buttons
(KBs)
Output Charecter 1
(OCH)
INK Area
1023 Control Word T
Figure 7. Display Buffer Allocation for SAMPLE
0 Control Word "
1 Permanent Image
(Title and Function Button)
Linked List for
Output Character Generator
INK Area
1223 Control Wé;g_—"‘ummm"mm:
igure 8. Display Buffer Allocation for TEST

38



I Set Return I

[- "Set Mode Flag to "Test" ]

.

" “Generate Title and FB(Clear)
Set origin of Ch¢ Block in DB
Ink origin + BIKK
Link DB Chﬂ Block
Generate Chws on DLIST in DB Ch
-l RS ——

(]

Block

BINK + INKPRG
Clear DBrywgre, 1023

Tp, SMflg,F, INK@RG + DB Control Wds

+ IMB

DBy, 1023 0, 1023

Call GRID end Wait

__:_'_T?I |

[ Fnter ANALYZER |
9,
Is AO(S) a Ch™7?

- ———

no yes

3- asw

Comgute rhﬁ size from Fn

r ““Are any DLIST entrien {nside’

no

[ Delete DLIST entries and

TN e e

{
[ r?s Scrubflas = 07 44]

yes no
r aad ch® to DLIST ana DB

|.A;e-ﬁll stroges p;;c9550d? I
e T
R yes RO .

Figure 9. TEST Subroutine

39




The Display List (DLIST) is a linked list of output characters and other
information required for physically locating the individual characters on
the display surface.

Each element contains the following:

1. Location of the lower left-=hand corner of the output character.

2, Size (R(ChI)).

3. A pointer into the Display Buffer to the origin of the points forming
the output character.

4, The output character code.
5. A link to the next item (O indicates the end of the Display List).

The limited ink space in the Display Buffer (actually the IM Buffer) allows
input of 6 to 8 small characters, 3 or 4 medium-sized characters, 1 or 2
iarge characters, and 1 or less very large characters. (This limitation or
extra~large characters is a problem.)

When an output is passed to TEST from ANALYZER, the display list is searched

to see if any characters are to be deleted. The test is performed by computing
the center of the character on the DLIST and comparing to see if it lies within
the minimum rectangle surrounding the input, R(ChI), All characters for which
this is true are deleted from the DLIST and DB.

Although the program currently outputs one of two special characters on the
display ("a" or "2") when an unknown character occurs, it may actually be
preferable to do nothing, that is, to ignore the input. For testing and
debugging purposes, though, these special characters have been of value.

6.4 ANALYZER SUBROUTINE

ANALYZER is==in reality--two programs: one is coupled to SAMPLE and the other
to TEST. FEach part could have been included as part of those routines, or
coded as separately callable subroutines, but it was more efficient to have
but a single routine. The distinction between the two parts or functions of
ANALYZER is obvious from a cursory examination of Figure 10.

In order to guarantee that the program executes the proper function, the variable
tmore is initialized to zero and is maintained at that value whenever ANALYZER
completes the analysis for a set of strokes in the TEST mode. Therefore,

on an initial entry with a new set of strokes, the function is differentiated

by examining the mode flag whose setting and resetting is completely under
control of TEST.

40



o

tmore -+ r
Is r = 0? ‘
yeés nlo 0 -+ tmore
0-+m

INKSRG + tbeg
INKLYC -+ tmax
Is Mode Flag = "Test"?

no

0 + Ns

0-m

Enter STRAKE

1
yes

05 hd AO(S)
0D

0

| Is Am(s) =9,

or og,?
W |

1
no

1
yes

1
no yes

LEnter SEARCHF' I

Ism=0? |

yes no
Is m < 137 |
] T
Yes no m =+ Ns
m-1 +m

ESETN

L Ta A (8) = 0.7 J um(s) ~ A,(8) J
1

|

A_(8) + AO(S)
R (£) + Ro(s)
R(Ry(5)) » Ry(s)

Figure 10.

41

AL(8) ~ A (5)
o Dm
Is Am(S) = 057
T T
yes no
F_ +F
T
E +E
r m
1l -+ MNs 0~+G
m
-
0-+m R.(8)
m+l *m
r+l * r

R (8), Rm(f)

Is A (S) = 0.7

no yes

I Enter STRPKE l

I Is Am_(S) = 0g or oq

or uh’.’ ]

|
yes

m -+ tmore

! m-1 *m l

ANALYZER Subroutine




That part of ANALYZER associeted with SAMPLE assumes that all of the strokes
to be processed belong to a single input character. The program successively
processes each stroke until the end of input (03) occurs or until an invalid

stroke (as defined in the STROKE subroutine) occurs. ANALYZER builds a table
of outputs (called STRK) from the input strokes, with each entry containing
the following items: F_ and E (the feature string for the stroke); G (the

geometric relationship between the mth stroke and its collected predecessors);
Am(s) (the result of dictionary searching or other ANALYZER results) and

Dm (the dictionary definition for the mth stroke and the successor link from
that entry); Rm(s) and Rm(f) (the minimum rectangle surrounding the stroke

and the rectangle surrounding all strokes through the mth one); and-~-as a
separate item-~Ns, the number of strokes in the character,

That part of ANALYZER used by TEST is a bit more complex. Rather than being
controlled by the inputs, it is controlled by the content of the dictionary.

It therefore can only determine when to output a character to TEST as a result
of searching the dictionary. Thus, it must be able to back up to the last
legitimate character (a Ch”) that it found, in some cases. STRK table also
contains the output of the analysis, Control is returned to TEST each time
ANALYZER has found (1) a node in the dictionary that has a Ch” as its definition
and no successor link, or (2) an intermediate undefined dictionary node (02) not

preceded by a ch? in the output table and no match on the successor stroke, or
(3) can find no match for a stroke at all (Ol) or (L) a scrub stroke (00--anything

with too many features) or (5) the end of .input (03). Invalid strokes (Ou) are
ignored, All of the pertinent output data, Am(s), Rm(f) and ﬁm(f), are placed

in the first table entry before control is returned to TEST each time.

6.5 STRYKE SUBROUTINE

STROKE processes one stroke at a time (see Figure 11). It clears the mth entry

of the STRK table, and sets Am(s) =0, (undefined) and Am+l(s) to 05 {empty)

as initial values. It then determines if the index pointing to the inputs is
pointing at the beginning of a stroke (M=l in DBt); if not, it indexes on until

it finds the beginning of a stroke or the end of input. When the beginning of
a stroke is located, the xy coordinates and the rejected point count are
transferred to the PTS table., Each entry of PTS contains the items X, Y, Ct
(the x and y coordinates and rejected point count); h (the heading reduced to
one of 32, between adjacent points); Ah (the difference between adjacent
headings); and I (a marker for corners and other path features). After
transferring the points from DBUFR, it determines whether or not the stroke

is valid (it is invalid (ou) if the sum of the absolute value of the difference

42



&

0 + STRK, Is ¢ = cix?
o, Am(s) 5 X
% * Am+l(s)
o-p Jslen son 1> 137161 }
0 eix no y;u
-l * e
theg + ¢ IIn ctc < 8 or Cte-o-ctc_l < 11;—1J
T
J Yes no
T
Yi‘ n*o . yes no
IEEE [os >4 ]
T T

T e I Is[an |-[an_,, [ > 1/262 I
t+l + ¢t

v M
0 =P8, | Y l | SN |
Xy -+ XY l
c +Ct
P
Xy, o+ tlxy)
@ Is|ah | > 1/2 or ¢ < pix?
T
)
Xoo¥o1¥ooy  ¥X)

D -
t+l + ¢

| Is t < tmex and M, = 07

DIRQ(X , ~t(x}, ¥, =t(y}} ~ &, (n)
DIRR(t(x)=X o, t(¥)-Y_ .} + t,(n)

-

T
yes

(]
‘ ty(h)=t,(h) ~ t(an) t~ tbeg
0 +PTS, @ Is [t(an)| > 3/16? p-l~ p
b'e 4 T 1
Xy, XAy nlo yos I
€, »Cty { 0 oy
0 - t(ah) + ah, Is p < 27
- =3 7 r—l__l T
I 1s |xp '(p-1|+IYp p-ll > 20 l 1/2()(<:+xc—2) - xchl n'o yes
- vis 20y 4 L)~ Y
5
{ 120X XY Xy ¥ > R_(5)
-
DIPq(AXp,AYp) - hP t = tbeg /20X Y o) Y Rm(S) Rm(r)
Is p = 17 9, Am(s) 0> Ah,
y:zs nlo 0~ Ah:+1 _Return
—
Peturn
=TT P e
Tse<3or I, C' or lc_3 C 7] Is Ip-l = 'C"?
yes nlo yes no
TR p * 8B,

Is|ah, _1| > 5/167
a|ah, s 117167 IIs th > 5/167 ]
F I P-ll | I P‘lr 5/ I no yes

T T
ves no b ves tlxy) » XY,
] 1 £ ) > ho,p O Moy

TCho. Ip 0+ Ahp_l cHl + ¢
e * cix
l Is p < 57 I | Enter B@TH I

yes
I Is Xmax_ -Xmin_ < 6 and Ymax -Ymin_< 67 I
m m m m
T T
no yes

I Return I

Figure 11. STROKE Subroutine

43




between adjacent coordinates is greater than 20), and if it is, locates any
existing corners. Upon completion of corner detection, it tests for a hook
that may be eliminated from the end of the stroke and enters the subroutine
B@TH to continue the feature extraction.,

6.6 BOTH SUBROUTINE

After initializing the indices p and q and fc (the feature count), BOTH (see
Figure 12) enters INFLEX (see below) to determine if there is an inflection
point between the beginning of the stroke and the first corner, or the end if
no corners are present. If k (a parameter set by INFLEX) equals zero, the
amount of curvature was below the threshold for a straight line, and B@TH outputs
a pair of feature codes based upon a table (see Figure 12) that describes the
segment (part of the stroke in question) in terms of the numbered areas (see
Figure 13) occupied by the end points. If ¢ is non-zero, an inflection point
has been detected and marked, or if the curvature (|:|) is insufficient, no test
will be made on the segment for an intersection and the area features will be
generated.

INFLEX computes the minimum rectangle surrounding the segment, Rm(f) and

from it BPTH computes the dimension of the diamond center area, (see Figure 1k4).
If an inflection point is marked (e=1), the "no output" occurs (except for the
occurrence of the inflection point) while the siroke or segment is in the center
diamond. On the other hand, if no inflection point is found and the total
curvature in the segment or stroke is great enough, XPVER is entered (see below).
It looks for closed loops and generates the appropriate feature string depending
upon what it finds. Because the curvature is high and there is no inflection
point, no center diamond area is computed in X@VER, Upon return, if the stroke
is not completely processed, a "C" (denoting the occurrence of a corner) is
concatenated to the feature string and the feature count is tested. (This is

the only reason in the current program for processing less than the full stroke.)
If the feature count is too large, the minimum rectangle for the stroke is
computed, the output code is set to OO’ and a return made to the calling routine,

If there is still room for more features in the string, the remainder or next
segment of the stroke is processed,

P

6.7 INFLEX SUBROUTINES

INFLEX (see Figure 15) not only “detects and marks inflection points in the
path, but also computes the minimum rectangle around the segment or stroke;
if it is a subsequent segment, INFLEX generates the geometric relationship
feature between the current segment and the collection of predecessors in
this stroke. In detecting inflections, initial limits on curvature are set
at 3/8 for a clockwise rotating stroke, and -3/8 for a counter-clockwise

44



X -cx + Ax

Y -cy ~ Ay

Is |ax|+|sy| < DI?

no

FQUAD(A):, ay) > Areﬂ

Is Area = a?

no

yes

Isa=5and ¢ =

1?_]

no

| Ie I_= '1"'? I

yes no

T
yes

APUT('I*)

Is p = q?

no yes

Figure 12.

45

l Is fc > 142 ,

no yes

pt+l -

R(R_(8)» XYPB + R (8)

0 +p
0 + fe
. k lcodel lcode2
»*aq 3} - -
1 3 1
Enter INFLEX 2 3 2
3 b 2
4 L 3
yes no 5 1 3
{ 6 2 3
, YP-Yq) -k Rz (1)) + exy 7 2 1
APUT(1codel(k)) Is ¢ = 07 8 3 L
APUT(1code2(k)) no yes
&)
no yes
l %(max(Xmexf_-Xminf , Ymexf -Yminf )) = DI J l Enter X@VER ]
©
C~+a
Is I_ = 'E'?
no yes

Is fc > 167

yes no

R (8)~ Rm(f)

B@TH Subroutine



Figure 13. Segment End=Point Areas

1/2 max (height, width)

Figure 14. Segment Feature Areas

46



0+

3/8 + K
~3/8 + L
0+k, c,y 8,
xyp -+ Rm(f)

p+tl + p
R(Rm(f), XYP) + Rm(f)

| Is £ > L? | I+H i
H-3/8 > L ﬁ(Rm(S)) + Axy

R(R (8), R (f)) » R (5]
Lo+, Is k = 57 Size(Rm(S)) + sxy

L+3/8 + H ves no ﬁ(Rm(f))-Axy + Axy

g ; ;
il Isk=3?IJ =% ] [ 3_)er Ts ax < ena ay < B

I

|
no yes no yes

' { i
I 5 +é“ r'5 > k —l [ HED8(Ax, ay) ~+ ecode ] 0 » ecode
L] L

Em ©-ecode + Em

Ah_ + It
a

Is |zt] > 5?

no Yes
a-l + a - L{a+p) + a
Lt+ah  + It A A % 4
a 8

1

Figure 15. INFLEX Subroutine

47




rotating stroke. If neither threshold is exceeded, the segment or stroke is
treated as a straight line by BOTH. As soon as one of the thresholds has been
exceeded, the other is modified so that the difference is 3/8. Only after

one and then the other of the two thresholds has been exceeded (using the
proper signs) is it assumed that an inflection point exists. Then a search

is made backward from the point that contributed the amount of curvature needed
to exceed the second threshold to the best approximation of the inflection
point. This determination is made by having the index "a" poirting to

the last point which exceeded a limit the first time, using "k" as a switch.

A temporary sum is generated backwards from the point indexed by "a", decrementing
"a" each time, until a limit of 5/16 is exceeded. The inflection point is

then marked half way between the point indexed by the last point examined
{indexed by p) and the present point indexed by a. The detection process
continues, marking each inflection found until either a corner or the end

of the stroke is found.

6.8 XPVER SUBROUTINE

X@VER is entered from BPTH (see Figure 16) only if no inflection point is

found and the total curvature found by INFLEX up to the present point exceeds

1 (that is, a half circle). The flag "k" is set by INFLEX to indicate the
direction of curvature; 3 for clockwise and 5 for counter-~clockwise, If

the end-points of the segment or stroke are within 8 raster units of one another,
or they are within one third of the width of Rm(f) in x and one third the heights

of Rm(f) in y, the path is considered closed and the entire figure is taken

as a loop. The code value stored by INFLEX with a zero added is used as the
output feature code, Otherwise, the path is followed through the four quadrants
(see Figure 13) until a quadrant is re-entered by the path and ended in or

has exited the quadrant.

When this circumstance arises, MINPTS is entered to determine the two points on
the path within the same quadrant that are clcsest to one anothsr. MINPTS sets
the appropriate feature code in CIc for the condition found beifore returning

to XPVER; it also indicates whether or not all of the stroke or segment has

been examined in the process {xtry=2) so that X@VER can complete the feature
string for the path. If no loop is found, X@VER generates a feature string

based on the four quadrants of the minimum surrounding rectangle. Note that
the center diamond is not used.

6.9 MINPTS SUBROUTINE
MINPTS (see Figure 17) is entered from X@VER with the indices q and p set to
the beginning and end of the portion of the stroke that has begun and ended

in the same quadrant of the minimum rectangle., If the path has not ended in
the quadrant, a search is made forward (toward the end) to determine if there

48



k * ccode
0 ~+c

q -+ cbe;c
P cendc
P -~ plinm

Is DIST(p, q} < 652

[} T
no yes

Size (Rm(ﬂ) ~ axy
[x x| +-ax
- A
lrp=v ! =+ oy

Ianx:%mdq:%

T
! yes

+ qlim

o e o o
+
o

TAB

Clenr N 0...b

0~+a, k

QUAD(XF-cx. Yp—cy) S

T

P

ves

APUT(CT )
Qq *Qp
APUT{0}

Enter MINPTS

Is p = plim?

yes no

¥ o

()

Figure 16. X@PVER Subroutine

49




—

P -+ SaVP
DIST(p,q) + mdist

2+k
Is mdist = 07 MP2]

[ 15 p=qormaist > 612 |
n'a yes

1+ k q *+k lsevp-»p l

@ P+ p
Return

DIST(p,q) + dist
1~k Is dist = pdist? | Is q = qiim? ]
\ T 1 1 = 0
yes no - vis rIs k = qlim? j
T
‘ n'o yes
[75 dist ¢ mdist? T -1 + q !
[ Is» = prin? s &5 pIST(p,q) + dist Ts DIST(p,k-1) < 657
no ves Is dist = mdist?
T
Yes nlo

[1: dist < mdist? ] yis 5
1
yes no
q+l » q

dist » mdist
0+ k

[reast =0v | X ves

p-l >+ p l n',, yt‘zs
k * cend
c

: c+l + ¢

no yes dist + mdist k -+ ebekc
0+ k
p-1+p ! ccode » CT_ j
DIST(p,q) » dist
Is dist = mdist?
}'llls ?o Is p = plim?
q+l + q no yes
Is dist < mdist? bIST{p,q) + dist
Is dist = mdist? Is DIST(p+l,q) < 659
T T T !
yes no Yes no
=T — 7 P
DIST(p,q) + dist lIs dist < mdist? ] ] - p ] P~ cend_
Is dist < maist? yoe S e+l + ¢
|l __ves no i P+ cber,
‘ Q+l - g plim =+ cendC
P2+ p DIET(p,q) ~+ dist 0 -+CI
Is k = 17 Is dist < mdist? savp % p
T T
yes no yes no
[[Tsatsv =07 ) Is k = 12

dist + mdist 0+ k

(=3
0 +x I
L

no ves { 2~ xtry
{ aist - mdist @ @

Figure 17. MINPTS Subroutine

50



is a pair of points (xyp+n, xyq) closer than the beginning and ending pair -

(xyp, xyq). By appropriastely manipulating p and gq, the peir of points that
are a minimum distance from one another is determined., If that distance is

less than or egqual tc 8 raster units (65 is used in MINPB because the routine
DIST generates the square of the distance), a closed loop has been found;
otherwise the path is not considered to have an intersection or to be closed,
the appropriate quantities and tables are updated and control is returned to
X@PVER.

6.10 QUAD, APUT and DIST

These three subroutines (see Figure 18) are service routines used by B¢TH,
X@VER and MINPTS.

QUAD simply assigns = quadrant number based upon the Ax and Ay supplied by
the calling Eoutine. In all cases of its use, the calling routine supplies
Axy = x,y - R(f).

APUT simply concatenates the feature supplied when the routine is entered to
the right end of the feature string (Fm), and increments the feature count (fc)
by one.

DIST computes the square of the distance between two points xyi and xy,, 1 and

J
J (indices pointing to two entries in the PTS table) supplied by the calling

routine,

6.11 DEFINE SUBROUTINE

DEFINE (see Figure 19) adds definitions to the dictionary. The DEFINE routine
starts with the last stroke of the input (entry m of the STRK table), inserting
only those strokes that were not found by SEARCHD, If all of the required

stroke information for the new character cannot be added because of insufficient
space, none 1s added to the dictionary, thus eliminating the problem of dangling
entries. In addition, it sets the variable "defn" to "OK" (if successful), or
to "NG" if the above problem arises,

6.12 SEARCHD SUBROUTINE

SEARCHD (see Figure 20) determines from the index m if the stroke to be searched
is the first stroke of an input character or a successor stroke., If the

stroke is a first stroke, the routine SEARCHF is entered. Otherwise, SEARCHD
computes the geometric relationship between the current stroke and the collection

51




Set Return

Is &x > 07
T T
no yes
Is Ay > 07  Is Ay > 07
T 1 1 1
yes no no ves

l f |

u.>mm{4l 3'+QMDiI 2 +me‘] 1 -+ QUAD
)

)

Return

Set Return

Fm©x > Fm

fe+l -+ fc
)

Return

Set Return ]

T

(xi-x3)2+(yi—yj)2 -+ DIST

Figure 18. QUAD(Ax,Ay), APUT (x), and DIST(i,j) Subroutines

52



I Set Return J

{

Ns =1 »mn
'¢K' > defn
AO(S) + Am(S)
0+ 2
SIOC + k
D +ad
m
Is d = 07
T 1
yes no
| Is DLOC € SLOC? I l Is ¢ = 0? l
T T
no yes no yes

{

!

| output "pIcTTONARY OVERFLOW" |

SLinkd + NLink

!

k - SLOC
'NG' - defn

I Return I

[AO—(S) - Defdl

2
L .
-+ SLJ.nkd
| Is m = 07 |
] —

DLOC + 4
DLOC+1 + DLOC

SLOC-1 -+ SLOC
SLOC + 4

(E,F,G)m -+ (E,F‘,G)d
0o~ Rcd
AO(S) > Def‘d
L= SLlnkd
0+ NLlnkd
da +D
m
Is m = 07
T I
yes no
I Return I d + £
oy + AO(S)
me=l + m

Figure 19.

DEFINE Subroutine

53




Set Return

Ism= 07
I 1
no yes
R(R_(8), R _,(f)) + R () Enter SEARCHF
Size(Rm(f)) > sxy ‘
R(R_(5))-R(R _,(f)) » axy Return
Is dx < i% and dy < E%?

1
yes no
8~ G HED8(dx,dy) = G
Is G = 87
m
! |
yis no
0 ~+>G
m

L .

size(R_(f))-Size(R _,(f))-8ize(R (S)) » dxy
Are dx and dy < 07

1

]
yes no
Are dx and dy g 1/8(sx+sy)? J
T
yes Jo
G +16 > G G +2L + G
m m m m

J

Enter SEARCHS

Return

Figure 20. SEARCHD Subroutine

54



its predecessors. It first computes the minimum rectangle surrounding all
strokes to this point and its size. It then differences the center coordinate
of the rectangle surrounding the current stroke with that of its predecessors
and determines if they are coincident., If they are, SEARCHS is called directly.
(Gm is preset to zero and that is the code used for coincidence.) If the two

rectangles are not coincident, the center~to-center direction is computed
using the routine HED8, and inclusion or overlap and nearness are tested

by computing

dxy = Size(Rm(f)) - Size(Rm_l(f)) - Size(Rm(S))

Figure 21 illustrates several examples of this computation, If from this
test it is determined that the rectangles are "near," 16 is added to the
center-to-center heading to complete the code for the geometric relationship;
otherwise 24 is added to indicate that the rectangles are "far" from one
another,

| x| ax | ax]

T TETEE oo o) — i iiaies IR Sy 7
: 1 : ' ] :
' R S by
: f : 1 : :
: ] : 1 Ay - feceaanans —_—
: | : ! Ay
: ] . ] ghitbader e
: 1 o ! !
: 1 : ! t :
serercee. Lo 8] I 1

AX and Ay < O Ax=0, Ay < O Ax and Ay > 0O
—— . - Rm(s) secsescase m_l(f) ——-—-—-—-Rm(f)

Figure 21. Examples of Overlap Computation

56



6.13 SEARCHF SUBROUTINE

SEARCHF (see Figure 22) begins its search for an exact match with the last
entry of the first strokes in DICT. (Figure 23 shows the content and layout
of DICT, the character definition dictionary.) If an exact match is found
for the feature string of the unknown stroke, the routine exits with the
dictionary location in Dm and the definition (Def) of that entry in Am(S).

If no match is made, Dm.is set to zero and Am(S) is set to cl.

6.1h SEARCHS SUBROUTINE

GEARCHS (see Figure 24) begins its search by examining Dm—l to determine whether

or not a legitimate successor stroke exists in the dictionary. If Dm—l is not

equal to zero, the successor link of the previous stroke must alsc be non-zero,

otherwise the routine returns with Dm equal to zero and Am(S) set to cl.

I1f a successor stroke exists, an exact match must be found between the -feature
string and geometric relationship of the unknown stroke, and the dictionary
entry. All of the potential successor strokes are tested in this way until
either an exact match is found or a "next link" equal to zero is found. In
the former case, the routine returns with Dm equal to the definition located

at that entry. In the latter case, the routine returns with Dm equal to zero

and Am(S) equal to o .

6.15 HED8 and DIRQ SUBROUTINES

HEDS (see Figure 25) and DIRR (see Figure 26) are two subroutines used for
guantizing direction. Both routines work from tables. Their basic difference
is the degree of fineness of the quantization. HED8B quantifies directions
into one of 8; DIRQ into one of 32. The values shown in HED8 (Figure 25) are
the values used. In order to facilitate differencing of the headings computed
by DIRQ (item h of the PTS table) to form Ah, the output values are formed as
two's complement fractions and are differenced as full word two's complement
fractions. A difference of -1 always results from a 180° change of direction
between the two headings; +1 never results, thus generating consistent values.

6.16 PURGE, MERGE and @PTIMIZE SUBROUTINES
These three programs do not run under the same control as those discussed

above. Because they require communication that would be .difficult through
the Graphic Tablet Display console, they communicate with the user

56



DICT
+1
+2
+3
+4
+5
+6

+n-6
+n=5
+n=-4
+n=13
+n=2
+n-1

+n

~=— DLOC

vy

—— SI.OC

Def | NLink

Figure 23.

Character Definition Dictionary

57

First
Strokes

Successor

Strokes



L Set Return

DLOC=1 + 4
- e 3
Is chta(E,I) Em,Fm:_I
T T
no yes
d-1 -+ d d ~» Dm
Is 4 = 0? De:f'd - Am(S)
v T
no yes i
L Return
0=->D
m
g, > Am(s)
Figure 22. SEARCHF Subroutine

L Set Return l

i

Dm—l i

Is 4 =

d
07

—T
yes

[;:; I

s d = 07

]

e Y5

T
no

0~+D
m

>
cl Am(

[Is Dictd(E,F,G)=Em,Fm,Gm?

s)

T

yes

{

no

1
l Return l

Figure 2k.

d-+D
m

d

Def., ~» Am(S)

NL]

nk, + d

SEARCHS Subroutine

58




Set Return

/

To(signdx,signdy, |%§f| ) - HEDS

Return
- Ax>0 | Ax<0 | Ax>0 | Ax<0
8 Ay>0 | Ay>0 | Ay<0 | Ay<0
A
o> |2 2{2+1 8 8 b 4
p
{3+1> I-g-lf_ﬁ-l 1 7 3 5
V2-1> |2L) >0 2 6 2 6
Ax '

Figure 25. HED8 (Axy) Subroutine Flow Chart and Table

59



I Set Return I

[
. . A

T32(51gnAx.91gnAy,|z§I) -+ DIRQ

!

Return

Ax>0 | Ax<0 | Ax>0 Ax<0

T32
Ay>0 | Ay>0 | Ay<0 Ay<0

(@}
]
)
J
’_l

w> lﬁl >10.175 0

5t
oo
,5.\,\:;

10.175> | 2L|23.287

3.287> |%|_>_1.871

ot
oo~
oA

Sl
=l
Sk

1.871> 2|21, 219

1.219> 1%130.821

Hll

=
'_l
)
[}
[

o.821>|%§439.53h

oA |5

0.53k4> l%ll >0,303

X -

ool
ee 3}

0.303>|£X] >0, 098

=D
Hlo
S

ot | G4 | o | e | =g g‘jw‘OOIl-‘ '5'+4
b
Hw
=5

1
he] [

0.098>|2X|>0,0

I
)%} P
-

Figure 26, DIRQ (Axy) Subroutine Flow Chart and Table

60



via a keyboard console, This imposes no hardship, since the keyboard consols
is required to initiate loading and other communication required by the Time-
Sharing System.

6.16.1 PURGE Subroutine

When called from the keyboard console, the program asks the user to supply a
purging threshold-~that is, the recognition count (Re) level below which entries
are to be removed. (It should be remembered that ANALYZER increments the
recognition count of an entry each time a completely successful match is made
between an input character and a dictionary entry.) If the user replies "NONE,"
the program asks which characters or entries, regardless of recognition count,
are to be removed. This interactive conversation is not actually a part of

the PURGE routine (see Figure 27), but rather is a part of an interactive
keyboard control program that provides the interface between the user and the
various service and special debugging aids that are a part of the system.

After the user supplies the appropriate response, the PURGE program methodically
searches the dictionary, entry by entry, following the links comparing the
recognition count to the user-supplied threshold--called Thresh--and output
character code--called PChar (only one is valid). PURGE marks those entries

that meet the criteria as "undefined" entries, and sets the recognition

count for those entries to zero., It then removes and restructures the appropriate
links for first-stroke entries. In order to accomplish this task, it uses an
additional table, DICTE,

When it has examined every entry, PURGE then enters COMPACT (see below), a
program that does the restructuring of the dictionary to recover space of

the vacated entries. Note that in the case of multi-stroke characters, only
those strokes of the definition are removed that are not linked to some other
entry that is not to be removed. That is, only the last n strokes of an m-stroke
definition may actually be physically removed from the dictionary. Take, for
example, a four-stroke '"M" drawn as where the first three strokes are defined
as an "N". If the user requests that "M's" be removed from the dictionary, only
the fourth stroke of the "M" in question will actually be removed and the first
three strokes that define an "N" will be undisturbed.

6.16.2 COMPACT Subroutine

COMPACT (see Figure 28) starts with the first of the successor strokes, compacting
the entries by removing those indicated in the DICTE tables by the calling program,
and restructuring the links appropriately so that the entries are tightly packed.
It then restructures the links in the first stroke and the successor stroke

entries from the information saved in the DICTE table.

61



—

Clear DICTE Table
0 +851, 82

1 +a

0 +k

l O*LLastk l

d + LThi.Ek
Is SLmkd =0t
T {
no yes
SLlnk‘_1 +d
k+l ~k

Is Def

= PChar?

@ Is Def, = PChar? A
. @ yes no no
d+ LlLast, ] [Is R, 2 Thresh? I [Is Re x,Thresh?]
1
‘ | no yes yes r;lo
NLink, ~d 9, = Def @ @ T+ DMark,
Is d = 07 0"R<:d Is k = 07
T 1
no yes
1+ 52 1+ 81
Is LLast, = 0?
no yes k
T
} . r—\'o yes @
k-1 + k LTh].sk+1 +a }
LThia =~ & Is 4 < DLOC? LLast, *t LThis, , + ¢t
yes - NLink; * NLink, NLink, - SLink,
@, '
Is 51 = 07 @
I
yes n*o
14k
Is 52 = 07 '—J 1-+4
I 1
no Yes
| Enter COMPACT I | ;5 DHarly = 07 l
T T
no Yes
[ Return I Dictk - Dictd
a+l +d
k+l + k
Is k < DLOC?
T T
Yes no
d + DLOC
Figure 27. PURGE Subroutine

62



lg, Set Return <1
1

511 + k
512 » d

Is DMa.rkk = 0?
[z e, o]
no Yis
d-1 + d
Dict, -+ Dictd

k
a + DT¢k

L

[ Is k = SLOC? |

T 1}
no yes

{ 1

k-1 » k 4 » SLOC
1+4

NLinkd + Xk
DT(bk - NL:Lnkd
SLinkd + k
DT¢k > SLJ.nkd
d+l + d

Is d < DLOC?

T 1
ves no

SLOC + 4

NLinkd + k

DTﬁk - NLinkd
SL:Lnkd + k
DTQ}k -+ SLlnkd
d+l + 4

Is 4 < 5127

T
yes no

Figure 28. G@MPACT Subroutine

63



6.16.3 MERGE Subroutine

The interactive keyboard control program requires the user to specify the
file name of the dictionary that is to be merged into the existing one. When
it receives a proper name from the user ("proper" in this sense means that it
is the name of a file that the user may access), it reads the dictionary file
from the system's disc storage into a second dictionary space called DICT¥,
MERGE (see Figure 29) then takes the strokes from DICT¥ following the links,
as if they were coming from the SAMPLE program, building a STRK table and
searching the existing dictionary for matches. If a complete match is found,
the sum of the recognition counts plus one replaces the recognition count in
DICT. If no match or an incomplete match is made in DICT, the non-existent
strokes are added to DICT by celling DEFINE,

In the case where there is an exact duplicate of feature information but the
definitions in the two dictionaries differ, the user is asked to make a

choice between the two available characters or delete the entry entirely.

If he chooses the latter, it is noted and PURGE is called to delete the
troublesome definitions. If the result of the merge produces a dictionary

that is too large, the user is informed that the merge was incomplete, and

he is unfortunately left with a dictionary of unknown content. Thus, it

pays to have previously saved a copy of both dictionaries that are to be merged
and to have purged and optimized at least one (if not both) dictionaries before
beginning the merge. Our present system permits the user to save any dictionary
on the system disc storage (at least temporarily) with any arbitrary name
attached, Therefore, it is not unreasonable to keep several versions of the
same dictionary available in case of emergency or for experimentation.

6.16.h Optimization

The process of optimizing the dictionary 1s one of recognizing groups of
dictionary entries that are unambiguously equivalent, and re-linking the
dictionary to reflect this equivalence.

Two dictionary entries are considered to be equivalent if they are on the
same dictionary level (i.e., both first strokes, both second strokes, ete.),
and one or more of the following conditions also holds true:

1. They have the same character definition.

2., They have successors at a common dictionary level that have
the same character definition.

3. They are identical (in feature, envelope, geometric=-relation)
and their most immediate predecessor strokes are equivalent.

In forming equivalence groups, an additional rule is applied: two entries,

64



0 + PG, @V

l+a
(Dlct2) -+ Dict*

h

8 + LT ism
*

Fa -»Fm

*

Ea »Em

"
G2~ O

no

i

e

Is m = 07
ye

{5

[ Enter SEARCHS J

[ Enter SEAHCHFJ

D_+d
s

| Is Def® = Def| 1] n+l + Ns ]

I
yes no

Der; + Defy

Output "CONFLICT:
'Def,' OR 'Def ' OR UND."

Def* - A,(8)

i
[ﬁer PURGE(O, 0y) ]
.

Is De!‘; = q27
yés no Reg +Rey
Output "CHARACTER = 7"
Wait for response
Is SLink; = 07 ’
no yes | Re*Rex+l > Rey I Is response = Def¥?
e & v
SLink¥ ~+a @
m+l >m Is m = 07 r Is response = Def,?
! no yes yés “ID
NLink; +> a ‘ ‘ a+l + a @
Is a = 07 Is a < DLOC*?
n'o y(les no yc'as I Is response = "UND."?
4 yes n!a
m-1 -+ m @
L’I'hism * e 0 + Rcd
Is PG = 0? o, A (S) Der,
no yes 1l * PG

(=

Is @V = 07
nr yes
Output Output
"MERGE INC@MPLETE" "MERGE OK"

Figure 29.

MERGE Subroutine

65

Enter DEFINE

Is defn = "gK"?

n|o yes

=)
=



each equivalent to the same third entry, are also equivalent to each other.
Finally, & dictionary entry that is equivalent to no other dictionary entries
forms a one-member equivalence group by itself.

An ambiguous equivalence group is one in which members have conflicting character
definitions; that is, among those members of a group which are not intermediate
strokes, more than one unique character definition is present,

The optimizer divides the dictionary first-stroke section into a set of
equivalence groups. Then, taking each of thse groups separately, it further
groups all successors, at all levels, to members of this group. The grouping
process results in a tree structure whose nodes are equivalence groups. Each
grour, except the first, is a next-level successor group to some previous

group., For each tree structure, ambiguity at any node renders the whole tree
ambiguous, and the dictionary entries associated with the tree are not optimized,
Otherwise, three kinds of optimization are performed:

1. Where a group contains subgroups of identical dictionary
entries, all but one member of each subgroup are deleted from
the dictionary.

2. Vhen a group contains members that are intermediate strokes
as well as members that have a character definition, the
intermediate strokes are redefined to that character.

3. All members of each successor group are linked, in the
dictionary, as next-level successors to all members of its
parent group. This provides definition paths in the dictionary
which did not before exist.

6‘

[

6.5 OPTIMIZE Subroutine

Optimization is performed by procedure OPTIMIZE (see Figure 30) and the
procedures DTREE, ADDGROUP, GTREE, GCHECK, RELINK, and COMPACT which it calls.
OPTIMIZE determines the membership of an equivalence grour at any level from
information contained in the section of the SORT table fcor that level; thus,
before any grouping is performed, the first~level section ¢f the SORT table

is constructed by applying procedure DTREE to each first-stroke entry of

the dictionary.

6.16.5.,1 DTREE Subroutine

When procedure DTREE (see Figure 31) is applied to a dictionary entry (entry ),
it examines entry_ and its successors at all lower levels, For each such

entry that has a character definition (is not an intermediate stroke), it

66



—

Clear DICTE Table
o~ cnau?o. LTAB,, LTAB,

(4
-
0 * S@RT,, SORT,
o+ CP
1+2p,¢

Enter DTREE

pHl ~p
Is p < DLOC?

2+l + 2
[d [5¢RT1
ctl » e
0 + SGRT,
CChainF *t

c~l + ¢

Is S¢RTLC = Temp?

yes

Do

p+l + g

Lo@RT,+1 + p
BSPRTR, t

0! e

De!‘t - ChE

t -+ GChain

o > GULlnkg, GSLin
R~ Dl;roupt
mmup'._Al -t

R - I.Groupl

Enter ADDGR@UP

k
4

DGLinkt -t
Is t =

BLink, * p Is t = 07
Is p = 07 n'o yés
vdo N i |
GSLink, = GRLink ] Enter ADDGRQUP
Enter DTREE A = GSLlink, S(DR’I‘LP -+ Temp l
LSERT, + ¢
| 2
0 -+ sig

ptl +p
Is SQ’R’I‘Lp = Temp?

o =
Is s@rT,_, = 02 o e
no yes

SERTR_ =t ]
P
e+l +¢
e strm, - ST
Is £ =17 Is s«m'rc =07
T T
no yes yes no
‘ j @P3,
LSPRT, + ¢ quTc - x
= 07
Is S@RT ., = 0 . Is DGroup,

Is GSLink; = 0?

no yes

1+

Enter GTREE(GCHECK) 0 + sig Is S6RT, = 07
LS@RT,+1 * T
t P no yes
Enter GTREE(RELINK) LS@RT, * ¢ l
] @ [[1scp=0 l
yes
ABORT

Figure 30.

Enter C@MPACT '

l Return '

@PTIMIZ

67

E Subroutine




[, Set Return ]

!

P+ i
14+

i =+ LThis

lA Is Defy = 9,2 i]
: n%

yes

[’Is SLinki = 0% J
|

Ajo yes
SLlnki > i ]
3+ » 3 NLink, > 1
Is i = 07
I 1
no yes

t

c-1 *Db

Js Defi, LThisl -+ sword

L, Is sword = S¢RTb? J

T 1
yes no

{

Is sword < S¢RTb?

1 T
no yes

[ b-1->1v |

l Return l 51 -+ ]

sword > SQ)RTb

Is

b+l + b l

sword = 07

Figure 31.

yes

f

1
no

c+l + ¢

0 >

S@RT
c

DTREE Subroutine




produces a tentative SORT table entry, which is then added to the current
section of the SORT table, only if no identical entry already exists there,
SORT entries are added so as to maintain ascending sort order within each
section, and section brackets (zero-words) are maintained at the top and
bottom of each section. {(The bottom bracket of each section elso serves

as the top bracket of the next section.)

A SORT entry is in two pieces:

1. SORTL, the left half-word, contains level (relative to the
level of entryp, which is assigned level l), followed by

the character definition.

2. S@PRTR, the right half-word, contains p.

Thus, where applied to entryp, DTREE adds SORT entries for each unique
dictionary character of which entryp is a component stroke. The uniqueness

test distinguishes, for example, between a 2-stroke and a 3=-stroke "N",

Once the first-level SORT section has been built, OPTIMIZE attempts to optimize
successor "families" of dictionary entries. For each family it first abstracts
s first-level equivalence group from the SORT table, and then goes on to group
the dictionary successors, at all levels, of members of the group.

The process to form a group, at any level, is this: The first group member
is that referenced in SORTR of the first entry of the appropriaste SORT table
section. Additional members are added to the group where they are found to
be paired (in SORTR) with a SORTL that is also paired with an existing group
member, As iterations are made through the section, SORT entries that
reference members of the group are deleted in such a way that when the search
is exhausted, the remaining entries in the section {(and the bottom bracket)
have been compacted upwards.

As each group is formed, an entry in the GROUP table is constructed. GROUP
entryo is never used; the first-level group goes into entryl, and each

successor group into the next available entry. Items GSLink and GNLink are

used to link the various groups (nodes of the group tree), GSLink points to

a group's first successor group; each group in the successor chain points

to the next link in its GNLink. Item GChain is the head of the group's
membership chain; it points to the dictionary location of the first group
member., FEach member is linked to the next member in.item DGLink in the extended
dictionary (table DICTE). Item DGroup (also in DICTE) points, for each member,
to the GROUP table entry of its group. Item Ch contains the group's character
definition.

69



When OPTIMIZE establishes a new group with its first member, it sets Ch to
the dictionary definition (Def) of that member. (This may be an intermediate
stroke, or 02.)

6.16.5.2 ADDGR@UP Subroutine

ADDGRPUP (see Figure 32) adds & new member to the front of a group's membership
chain. It also sets the new member's DGroup, and updates the group's Ch. If
Ch starts as Oos it is replaced by the definition of the first new member that

has a Ch~, Subsequent addition of a new member with & different character
definition makes the group ambiguous. For ambiguous groups at other than

the first level, an immediate abort is made. To ensure that all members of
an ambiguous first-level group are removed from the SORT table, the group's
Ch is set to 013 it remains so until the group is completely formed, at which

time an abort is made.

An abort discontinues processing of the current faemily. The contents of the
GROUP and SORT tables beyond the first sections are disregarded, and processing
of the next family is initiated by forming a new first-level group into GROUP
entryl.

Upon formation of an unambiguous group, additional groups are formed in the
following order:

1. The DTREE subroutine processes =ach member of the group Just
completed to form a SORT section at the next level. If this
section is empty, control passes to step 2. Otherwise, the
level is stepped down, and a group is formed from the new
section to begin the successor chain of the group just made,

2. If the SORT section at the current level is not empty, another
group is made at this level, and added to the front of the
successor chain of the most recent group formed at the previous
level., If the SORT section at this level is empty, however,
the level is stepped back up, and step 2 is re-entered.

The process stops when step 2 is entered and level is 1. That is, the tree is
completed when the next group to be made is a first-level group. To facilitate
group linking and level stepping, table LTAB is maintained during the grouping
process. Indexed by level, LTAB entries contain item LSORT (which points to
the top bracket of the corresponding SORT section) and item LGroup (which
points to the GROUP table entry for the most recently formed group at each
level).

0



Set Return

GCha.ing <+ DGLink

t
t > GChaing
g ., DGroup
t
= r I = = ?
Is Chg cl or Deft 02 or Ch Deft.
yés no
Return Is Chg = 0,7
yés Jo
|
{ i
Deft > Chg Is g = 17
yes no
Return {
oy -+ Ch
Return

Figure 32. ADDGRPUP Subroutine

71



A group tree which survives to this point has been constructed by the application
of only the first two equivalence rules., To apply the identity rule, OPTIMIZE
now calls procedure GTREE to step through the tree structure, applying procedure
GCHECK to each group.

6.16.5.3 GTREE Subroutine

GTREE (see Figure 33) steps through the tree, beginning with the first-level
group, in this order:

1. Down to the next level, to the group pointed to by GSLink,
but if GSLink is zero, then:

2. Across to the next group pointed to by GNLink, but if GNLink
is zero then:

3. Back up a level, then proceed to step 2.
GTREE is finished when all nodes have been processed. To facilitate stepping,

GTREE uses the LEVEL table, in which item LThis points to the current node at
each level.

6.16.5.4  GCHECK Subroutine

When GCHECK (see Figure 34) is applied to GROUPg, it makes identity comparisons
between each member of GROUPg and all next-=level dictionary successors to the
members of GROUPX, the parenf group of GROUPF' (No member of GROUPF that

>

has been marked as identical is used as a basis for comparison, however, and
no nember of GROUPg is compared with itself.) When an identical dictionary

entry is found, it is marked by having its DEQ in the extended dictionary point
to the dictionary entry to which it is identical. If the identical entry is
not alsc a member of GROUPg, it belongs to another group (GROUPi) which is

also a successor to GROUPX. In this case, GRoUPi is merged with GROUPg- (But

if the Ch's of these two groups are in conflict, the merged group would be
ambiguous, and an abort to begin processing the next family is made.) Steps
in the merging process are:

1. GROUPi is deleted from the chain of successors to GROUPX, and

the linkage is closed (note that because of processing order,
GROUPi is further along this chain than GROUPg, and has not yet

been processed by procedure GCHECK).

72



Set Return
Set loc of SBR

l+g
142
LThis
g - 1}
Enter SBR
Is GSLinkg = 0?7
l 1]
no yes
GSLink -~
@ g
2+l > 2 GNLink -+ g
Is g = 07
I ]
yes no
Is ¢ = 17
T T
no yes
L=l =+ £
LThis2 > g

Figure 33. GTREE Subroutine

3



Set Return

yes no

I Return I L’I‘hiu'__l-x

Gchainx - x
GChain_~+ ¢
£

l SLink_ + t !
P

[ Is t = ¢ or 0? j

! T
yes no

is F, = Fc and
DGLink_ + p E, =EF and
P ¢

Is p = 07 Gt = Gc?

yes yes no

c*DE(lt

Is DGruupt = g?

T
yes no

DGroupt + i

l Is GNLinkt = {7 I

| T
no yes
t

Gl”.,inkt hd

(}l‘lLink1 - GHLinkt
GSLinkX *t

is t = 02

GChuin1 -t Is.GHLink‘ = 07 l
DGLinkc + 4

yes no
t =~ DGLink
1 GSLink  ~ GHLLnK,
‘ GSLink; -+ GSLinkg

& DGroupt l

I ink, = 07
s DGankt o

T T
no yes

} {
! BGLink, + t | i+ DGLink, I

Figure 34. GCHECK Subroutine

74




L

7
2. If GROUPi has a non-empty successor chain, then GROUPg's
successor chain is appended to it, and the pointer GLinkg

is made to point to the first link of the combined chain.

3. The chain of members of GROUPi is inserted intoc the chain of
members of GROUPg immediately following the link which is

currently the basis for comparison,

4, The DGroup of each member of GROUPi is changed to reflect
membership in GROUPg.

5. If GROUPg's Ch is O it is replaced by Chi.

Note that the GCHECK subroutine does not operate on the first-level group

(GROUPl); it has no parent group.

If a tree survives to this point, the dictionary entries associated with it
are then optimized. OPTIMIZE again calls procedure GTREE to step through
the tree, but this time applying procedure RELINK to each group.

6.16.5.5 RELINK Subroutine

RELINK (see Figure 35) applied to groupg first considers the set of dictionary

entries formed by the union of the members of all groups on GROUPF'S successor

3

chain. Each member of the set that has been marked as identical By GCHECK is
processed in the following way:

1, It is eliminated from the set.

2. Its recognition count is added to the recognition count
of the dictionary entry to which it is identical,

3. It is marked for subsequent deeltion. Its DMark in the extended
dictionary is set "on", and the deletion signal (item CP) is

also set "on".

The remaining members of the set are linked together in the dictionary as the
successor chain to each member of GROUPg. SLink of each member of GROUPg points

to the head of the chain (SLink's are zero if the set is empty), and members of
the chain are linked to each other by their NLinks,

75



l, Set Return

T

GSLinkg +> C
0=+t

Is ¢

yes

-+ NLink
D
P*t

DGLinkp *>p
Is p = 07

T T
no yes

GNLinkc > c

Is ¢ = 07

T T
no yes

Figure 35.

| GChain -~ ¢ l
g

t > SLinkc

Ch_ -+ Def
4 c

DGLinkc > c

Is ¢ = 07

T
no yes

RELINK Subroutine

6



Finally, RELINK replaces the character definition of each member of GROUP

with the group's Ch. Actual redefinition takes place when a member is an
intermediate stroke and Ch is a defined character,

When relinking is finished, OPTIMIZE begins processing the next family, If

at this time, or after an abort, the SORT table first-level section is empty,
all families have been processed. Before exiting, if the deletion signal is

on, OPTIMIZE calls the COMPACT subroutine (see above) to delete those dictionary
entries that were marked by RELINK.

M




ADDENDUM A:

TERM

a, b, ¢, 4, i,
Js k, 1, my n,
P, qy Ty S

A(8)

Al

BINK

c

ccode
cbeg, cend
Ch

Chg

CHEW

MEANING

These letters are used to
designate indices in the
usual progremming sense
of pointers to table
entries or iteration
counts.,

Result of processing an
input stroke.

A primary stroke feature-
loop, inflection point,
or corner.,

Origin of tablet input
into the display buffer
used to set INK@RG,

Rejected point count.
Single feature storage.

Beginning and end
pointers,

Definition associated
with a group.

Symbol used to designate
a member of the output
character set.

The progrem switch in
SAMPLE theat controls
program flow and the
meaning of user actions
at the tablet. CHSW may
be set to "D" meaning "a

defined character has been
output or a new definition

added to the dictionary";
N, meaning "there is no

78

GLOSSARY OF MNEMONICS AND ABBREVIATIONS

REFERENCE

SAMPLE, TEST, ANALYZER STR@KE,
3¢TH, DEFINE, SEARCHF, SEARCHS

XPVER

SSMPLE, TEST

GRID, STRPKE
XGVER

X@VER, MINPTS

ADDGR@UP, GCHECK, RELINK

SAMPLE, TEST

SAMPLE



TERM

CI

cix

ct

def

defn

DEQ

DGlink

DGroup
DI

dist

DLIST

MEANING

input" (this is the initial
condition and the condition
after a "clear"); "U" meaning
"there is an undefined input
pending; and "R", meaning
"the function button REDEFINE

‘has been pushed".

Indicator for direction of
rotation,

Test value for index.
Rejected point count.

Dictionary pointer resulting
from search.

Output definition in each
dictionary entry.

Indicator for success or
failure of adding new entry
to dictionary.

Pointer for like entries in
dictionary.

Pointer into DICTE.

Classification for groupings.
Center diamond dimension.

Square of the distance between
two points.

The linked list of output
characters in TEST containing
size and position information
and the relative location of
the actual character in IMB
or DB,

79

REFERENCE

XPVER

STRPKE
ANALYZER

ANALYZER, DEFINE, SEARCHF,
SEARCHS

DEFINE, SEARCHF, SEARCHS,
PURGE, MERGE, DTREE, ADDGR@UP,
RELINK

DEFINE, MERGE

GCHECK, RELINK

OPTIMIZE, ADDGRgUP, GCHECK,
RELINK

OPTIMIZE, GCHECK

BYTH

MINPTS

TEST




TERM

DLOZ

DMARK

E

ecode

FB

fc

GChain

GHLink

GSLink

=

MEANING

Pointer to next available
first stroke location in
dictionary.

A flag.

Part of feature string.

Single generated feature
storage.

1) Filter constant set by
SAMPLE and TEST for use
by GRID,

2) Part of generated feature
string.

Abbreviation for "function
button"

Feature count.
Geometric relationship
between strokes of a

multi-stroke character.

Pointer into dictionary.

Pointer into GR@UP table.
Pointer into GRPUP table.
Hesading computed between two
points by DIRQ.

Upper limit for testing
curvature in inflection point
computation,

Indicator for primary stroke

features: corner, inflection
point, or loop.

80

REFERENCE
DEFINE, SEARCHF, PURGE,
CPMPACT
PURSE, C@MPACT, RELINK

ANALYZER, DEFINE, SEARCHF,
SEARCHS, MERGE, GCHECK

INFLEX

SAMPLE, TEST, GRID

ANALYZER, DEFINE, SEARCHF,
SEARCHS, MERGE, GCHECK

SAMPLE, TEST,

B@TH, APUT

ANALYZER, DEFINE, SEARCHD,
SEARCHS, MERGE, GCHECK
OPTIMIZE, ADDGR@UP, GCHECK,
RELINK

OPTIMIZE, GCHECK, RELINK

OPTIMIZE, GTREE, GCHECK,
RELINK
STREKE

INFLEX

STROKE, B@TH



|2

TERM

IL@gC

IMB

INKL@C

INKPRG

KB

KCB

LLast

LSort

Lthis

mdist

NLink

Ns

MEANING

Coordinate location on displsy
surface for output messages.

Input memory buffer for display
refreshing.

The current relative location
in IMB for "ink".

The relative location that
"ink" is to start in IMB.

Flag used to indicate
existence of an inflection
point.

Abbreviation for keyboard
button .

Abbreviation for keyboard
change button.

Lower limit for testing
curvature in inflection
point computation,

Pointer used for termination
of processing.

Pointer into S¢RT table.

Pointer used for various
purposes.,

Minimum value of square of
computed distance between
two points.

The pointer to the next stroke
at the save level in the list
of successor strokes in the
dictionary.

Number of strokes.

81

REFERENCE

SAMPLE

GRID, SAMPLE, TEST
GRID, SAMPLE, TEST,
ANALYZER

SAMPLE, TEST, ANALYZER

INFLEX, B@TH

SAMPLE
SAMPLE

INFLEX

PURGE, MERGE

$PTIMIZE

PURGE, MERGE, DTREE, GTREE,
GCHECK

MINPTS

DEFINE, SEARCHS, PURGE,
COMPACT, MERGE, DTREE,
GCHECK, RELINK

GRID, ANALYZER, DEFINE



TERM
@V

PChar

pix
plim
PG

psSw

s1, S2

savfc

savp

scrubflag

sig

MEANING
Overflow flag.

Output character definitions
to be purged from dictionary.

Test value for index.
Test value for index.
Purge flag.

RAND Tablet stylus tip
switch,

Feature storage location.
Test value for index.

Minimum rectangle surrounding
argument; either a feature or

an entire stroke.

Center of minimum rectangle
(see R(x)).

Recognition count kept in
dictionary for each success=
ful match made with the
associated entry.

Symbol used to denote an input
stroke,

Flags.

Temporary storage for feature
count,

Temporary storage for index p.
Flag used to indicate whether
or not an input stroke is to

be interpreted as an erasure,

Flag.

82

REFERENCE
MERGE

PURGE

STRPKE
X@VER, MINPTS
MERGE

GRID

XPVER

MINPTS

SAMPLE, TEST, ANALYZER,
INFLEX, B@TH, X@VER,
S¥ARCHD

ANALYZER, B@TH, SEARCHED

ANALYZER, PURGE, MERGE,
RELINK

SAMPLE, TEST

PURGE

X@PVER

MINPTS

TEST

PPTIMIZE



TERM

Size(x)

SLink

SL@C

SMflg

SPRTL

sw2

MEANING
Size (height and width) of
rectangle surrounding

argument {(call R(x)).

The pointer to the first

legitimate successor stroke

for multi-stroke characters
in a dictionary definitionm,

The pointer to the next
available successor stroke
entry in the dictionary.

Smoothing flag, set in

control word of display buffer
in Input Memory to enable or
disable smoothing,

Entry in S@RT table composed
of stroke level and associated
definition.

Dictionary pointer from S@RT
table for SPRTL item.

The program switch in GRID
that is set to the appropriate
function according to the value
of psw and Td’ the time delay.

It has the value IGN, meaning
"ignore the tablet"; TB, meaning
"post only the current position
of the pen in IMB at TB"; and
INK, meaning "filter and post
the path of the pen on the
tablet as long as psw is on

and there is room in the
buffer”,

The program switch in GRID that
enables or disables smoothing.
It has the values of "on" and
"off" according to SMFLG.

83

REFERENCE

INFLEX, SEARCHD

DEFINE, SEARCHS, PURGE,
C#MPACT, DTREE, GCHECK,
RELINK

DEFINE, PURGE, C@MPACT,
MERGE

GRID, SAMPLE, TEST

$PTIMIZE

@$PTIMIZE

GRID

GRID



TERM MEANING REFERENCE

t or temp A temporary storage. STRPKE, @PTIMIZE

tbeg Pointer to the beginning of ANALYZER, STRGKE

D'

TD*

Thresh

tmax

tmore

Xxtry

a stroke.

The time delay set in IMB by
the calling program to specify
when GRID shall give up control
after a psw "off" is detected.
Time is specified in units of
.25 sec.

An intermediate storage for TD.

The computed value for use by
GRID to effect the time delay
test based upon a clock that
increments in units other
than .25 sec.

Recognition count threshold.
Dictionary entries with a
recognition count less than
the threshold are removed from
the dictionary.

Pointer to one beyond the last
entry of tablet inputs in DB.

Flag used for terminating
processing in TEST mode of
ANALYZER.

Individual coordinates of
points making up input
strokes stored in DB,

Individual coordinates of
points making  up input
strokes stored in PTS table.

Flag used to indicate success

or failure of loop or inter~
section test.

84

GRID

GRID

GRID

PURGE

ANALYZER, STR@KE

ANALYZER

GRID, STRUKE

STRPKE, B@PTH, INFLEX,

XPVER

X@VER, MINPTS



===

ADDENDUM B: EXAMPLE OF OPTIMIZE

Figure B-]1 represents a sample dictionary before and after OPTIMIZE., Figures
B-2 through B-22 present the contents of the dictionary and other tablet at
successive stages of the optimize process. Strokes are represented symbolically
in the first column of the dictionary (labeled "Feature"); at each dictionary
level, strokes represented by the same symbol are identical. For this sample
dictionary, three dictionary entries are deleted, and nine new character
definitions are added. In the table below, entries above the double line
represent dictionary definitions before optimize, while entries below the

double line are those added by optimize.

Table B-1. Stroke Entries for Sample Dictionary

| Character || Stroke 1 Stroke 2 Stroke 3 Stroke L
—h e
L |
N / \ /
E | \ / |
M \ \ / \
M / \ l \
1 /
N | \ |
. ! \ I
N I R AN /
M | \ | \
oM l \ l |
| M / \ | |
M / \ / \
I N ] |




Feature Def SLink NLink Feature Def SLink NLink
0 0
1 0 0 1 . 0 0
2 | 1 509 0 2 | 1 509 0
3 / %5 506 0 3 / 1 509 0
SoL M 0 0
505 | 9, 50L 0
s06 [\ 9, 507 | 0 4,
507 / N 0 | 505 507 [ N 508 510
508 \ M 0 o} 508 \ M 0 511
509 \ %5 510 0 509 \ 92 507 0
510 / o, 511 o} 510 / N 508
511 | M ) 508 511 | M 0 )
a. DICT before optimize b. DICT after optimize

c¢c. Tree Diagram of original Dictionary 4. Tree of Optimized Dictionary

Figure B-1l. Sample Dictionary Before and After Optimization

86



The first-level section of the SORT table was made.
dictionary first stroke (strokes 1-3).

of the section. SORT6 is the bottom bracket.

87

LSort

1

DIREE was applied to each
bracket

points to SORT

O}

the top

DICT DICTE
Feature Def SLink | NLink ||DGLink | DGroup DEQ DMark
I R D D
O TP I - T TR
2 | 1 509 0.
3 | % | 506 | o
7 =
sob [\ oM . | o |
sos |l .} % | oso. | o | |
506 |\ % | sor 0
sor | /..M. o 505
s8 [\ M 0 0
500 |\ ‘2 | 510 0
510 |/ % 511 0
511 i M ) 508
SORT SORT LTAB
Ch GChain GSLink GNLink Sortl Sortr LGroup LSort
0 0 0 0 0 0 0 0 0 o) 0 )
1 1 1 1 2 1 0 0
2 2 1 1 2
3 3 3 o 3 3
N " I ki 2 U
5 5 L I4 3
6 0 0 0
i -
8
Figure B-2. Step 1 of Optimization




MW D O

DICT DICTE

Feature Def SLink NLink DGLink DGroup DEQ DMark
. —
1 . 0 0
2 | 1 509 0 0
3 / % 506
7 / 77
504 \ M 0
505 | % 50k
506 \ 9, 507 )
507 / N 0 505
508 \ M 0 0
509 \ % 510 0
510 / % 511 0
511 | M 0 508
GROUP SORT LTAB
Ch GChain | GSLink | GNLink Sortl Sortr Loroup | LSort
0 0 0 0 0 0 0 0 0
1 3 0 0 1 1 1 1 0
1 =2 0 ) 2
3 3
s L
5
6
T
8

Figure B-3. Step 2 of Optimization

GROUPl was formed at level 1; its members are stroke3 and stroke2 (each is the
first stroke of a b-stroke "M"). The group character is '1'. LG-roupl points

to GROUPl, the current GROUP entry at level 1. The remaining first-level SORT
section has been compacted; SORT2 is now its bottom bracket. DNote that if stroke3
had been defined as a divide sign, the group character would be "Oi", and further

work on this family (Figures B-4 through B-19) would have been sborted.

88



DICT DICTE

fE‘eaturejﬁ Def SLinl; NLink DGLink DGroup DEQ DMark
o T =
1 . . 0 0
2 | 1 509 0 0 1
3 [ /7 1 % 506 0 2 1
X //////// 7% 7
50 M
505 ;:;WfrggA % | som 0
so6 |\ | % 507 0
sor |/ | w 0 505
508 \ M 0 0
509 \ %y 510
si0 [/ A
sit [ | M 0 508
GROUP SORT LTAB
Ch GChain GSLink GNLink ' Sortl Sortr LGroup LSort
o 0 0 0 0 0 0 0 0 0 0 0
1 3 o) 0 1 1 . 1 1 1 0
2 2 0 0 0 2 2
3 3 2 N 506 3
b I 3 M 506 Iy
5 5 3 M 509
6 0 0 0
T
8

Figure B-4. Step 3 of Optimization

A second-level SORT section was made. DTREE was applied to stroke3 and strokee,
the members of GROUPl.

89



DICT DICTE

Feature| Def SLink | NLink [{DGLink DGroup DEQ IMarkj
0 ]
1 . 0 0
2 | 1 509
3 / % 506 T
2z, 72z
504 \ M 0
505 | % 50k 0 ]
506 \ % 507 0 0 2
507 / N 0 505
508 \ M 0
509 \ % 510 0 506 2
510 / S 511 )
511 [ M 0 508 T I
GROUP SORT LTAB
Ch GChain GSLink | GNLink Sortl Sortr LGroup | LSort
0 0 0 ) 0 0 ) 0 0 0 8] )
1 1 3 0 1 1 1 1 1 0
2 % 509 0 0 2 0 ) 2 2 2
3 3 0 0 3
| L 4
5 5
6
7
8

Figure B-5. Step 4 of Optimization

GROUP2 at level 2 was formed. Its members, stroke and stroke506, are each

509

the second stroke of a lU-stroke "M". GROUP, is & successor to GROUP;; its group
t

character is "02

90



i

A third-level SORT section was made.
06’ the members of GROUP

stroke

p

o

91

DTREE was applied to stroke and

509

DICT DICTE
Feature| Def Stink | DLink ||DGLink |DGroup | DEQ wﬂ
. S
1 . . 0 0
e[ L | a 509 0 1
3 [/ | % | 506 | o | 1
T 2
50k \ M o o)
so5 |1 | % soh | O R
506 | N\ ] %2 507 0 0 2
sor |/ | ™ | o 505
508 f N\ | M o | o
509 \ % 510 o || 506 2
510 |/ % 511 0
511 | M 0 508
GROUP SORT LTAB
Ch GChain { GSLink GNLink Sortl Sortr LGroup LSort
0 ) 0 0 0 0 0 0 0 0 0 0
1 1 3 2 ) 1 1 ; 1 1 1 )
2| % 509 ) ) 2 ) ) ) 2 2 2
3 3 0 0 0 3 3
L b 1 N 507 Iy
5 5 2 M 505
6 2 M 510
T 0 0 0
8
Figure B-6. Step 5 of Optimization




DICT DICTE
Feature Def SLink NLink {{ DGLink | DGroup DEQ DMark '
o}
1 . . 0 )
2 J 1 509
3 / ° 506 7
Z Z
504 \ M 0 0 [ )
505 | %, 504 0 T
506 \ % 507 0 0
507 / N 0 505 0
508 \ M 0 0 B
509 \ % 510 0 506
510 / % 511 0 -
511 | M 0 508
GROUP SORT LTAB
Ch GChain GSLink GNLink Sortl Sortr LGroup LSort
0 0 0 0 0 0 0 0 0 0 0 0
1 1 3 2 0 1 1 . 1 1 1 0
2 9 509 3 0 2 0 0 0 2 2 2
3 N 507 0 0 3 0 0 o 3 3 3
4 4 2 M 505 N
5 5 2 M 510
6 0 0 0
7
8
Figure B-7. Step 6 of Optimization
GROUP3 was formed at level 3; its single member is Str°ke507' GROUP3 is a

successor to GROUPE; its group character

92

is "N".




DICT DICTE

Feature| Def Slink | MNLink || DGLink | DGroup DEQ ]MarkJ
0 EO— .
i I I o] (o] '
2 | 1 509 0 0 1
3 / o, 506 0 2 1
U
50k |\ Moo ] o
so5 | L. | ©2 50l o
506 \ O 507 ) )
sor |/ N 0 505
508 \ M o) 0
509 |\ 2 | sw0 | o0 506 2
sio |  / % 511 0
s11 | | M 0 508
GROUP SORT LTAB
Ch GChain | GSLink GNLink Sortl Sortr LGroup LSort
0 o ) 0 ) 0 0 0
1 1 3 2 1 1 . 1 1 1 o]
2 | % 509 2 0 0 0 2 2 2
3| W 507 3 0 0 0 3 3 3
) in 2 M 505 i 6
5 | i 5 2 M 510
6 0 0 0
T 0 0 0
8

Figure B-8. Step 7 of Optimization

A fourth-level SORT section was formed. DIREE was applied to stroke
only member of GROUP

507’ the
3° Strokeso? has no successors in the dictionary, therefore
the SORT section is empty.

93



DICT DICTE

Feature| Def SLink | NLink || DGLink | DGroup DEQ Diark J
. — — o e
1 0 0
2 | 1 509 0 0
3 / © 506 2 1| ]
7 Z
50k \ M 0 0
505 l % 50k o || o 4 N
506 \ % 507 | e | T
507 / N 0 505 0 3 o T
508 \ M 0 T 1
509 \ %, 510 0 506 | 2
510 / % 511 0 505
511 | M 0 508
GROUP SORT LTAB
Ch GChain GSLink | GNLink Sortl Sortr LGroup LSort
0 0 0 0 0 0 0 0 o 0 0
1 1 3 0 1 1 1 1 1 0
2 o, 509 L 0 2 0 0 2 2 2
3 N 507 0 o 3 0 0 3 I 3
" % 510 0 3 4 0 0 0 N
5 5
6
T
8

Figure B-9. Step 8 of Optimization

GROUPu at level 3 was formed; its members are stroke510 and stroke505. GROUPh

was added to the successor chain of GROUP the chain now contains GROUPu

2;

and GROUP3. The group character of GROUPh is 02 . Stroke5lo and strokeSO5

are each third strokes of a L-stroke "M".

94



DICT DICTE
7Feature Def SLink | NLink || DGLink | DGroup | DEQ DMark l
ol — —
1. . 0 0
2| | 1 | 509 o] o 1
3L/ 2 506 0 2 1
2 * Z
sob |\ M ) o
so5 ||l Z2_ | son 0 ° 4
506 |\ 9 sor | o 0 2
sor{ [/ N | o 505 0
so8 | N | M 0 0
so9 |\ % 510 0 506 2
sio] / %2 | 511 ° 505 b
si || M 0 508
GROUP SORT LTAB
Ch GChain GSLink GNLink Sortl Sortr LGroup LSort
o] o 0 0 0 0 0 0 0 0 5
1 1 3 2 ) 1 1 . 1 1 1 o)
2 | % 509 " 0 2 o 0 0 2 2 2
30 N 507 0 0 3 ) 0 0 3 b 3
y | %2 510 o 3 N 0 0 ) L L
5 5 1 M 50k
6 1 M 508
7 1 M 511
8 0 0 0
Figure B-10. Step 9 of Optimization
A fourth-level SORT section was made. DTREE was applied to strokeSIO and

stroke

50

52 the members of GROUP

L

95




VM oE W N e o

DICT DICTE
Feature | Def SLink | NLink |} DGLink |DGroup DEQ DMark
o
1 . 0 0
2 ! 1 509 0 o 1
3 / % 506 0 2 1
/ Z
504 \ M 0 o) 0 5
505 l % 50k 0 0 n
506 \ % 507 0 2
507 / N 0 505 0 3
508 \ M 0 0- 504 5
509 \ % 510 0 506 2
510 / % 511 0 505 4
511 | M 0 508 508 5
GROUP SORT LTAB
Ch GChain GSLink GNLink Sortl Sortr LGroup LSort
0 0 0 0 ) ) 0 0 0 )
1 3 2 0 1 . 1 1 1 )
% 509 4 0 2 0 0 2
N 507 0 0 3 3
S, 510 5 3 in "
M 511 0 0 5
6
T
8
Figure B-13. Step 12 of Optimization

The SORT sections at levels U, 3, and 2 are found to be empty, and the level

counter is stepped back to level 1.

complete.

98

Formation of the first group tree is




Vi g O

DICT DICTE
Feature] Def SLink | NLink || DGLink | DGroup DEQ TMark
C
1 . . 0 0
2 | 1 509 0 0 1
3 / 9% 506 0 2 1
/ /%
504 \ M 0 0 0 5
505 | % 50k 0 0 k
506 \ %, 507 0 0 2 509
507 / N 0 505 0 3
508 \ M o 0 504 5
509 \ % 510 0 506 2
510 / Sy 511 0 505 I
511 | M 0 508 508 5
Ch GChain | GSLink | GNLink Sortl - Sortr LGroup | LSort
0 0 0 0 0 0 0 0 0 0
1 3 2 0 1 1 1 1 1 0
% 509 b 0 2 0 0 2
N 507 0 0 3L 3
% 510 5 3 4 N
M 511 ) 0 5
6
T
8
Figure B-1l4. Step 13 of Optimization

Procedure GCHECK was applied to GROUPl, but performs no operation on a first-

level group.

GCHECK was then applied to GROUPZ; stroke506

identical to stroke .

509

99

was marked as




VM oE WD R o

DICT DICTE

Feature Def SLink | NLink DGLink | DGroup DEQ DMark
o e
1 0 0 B
2 | 1 509 0 0 T
3 / % 506 0
50k \ M 0 0 5
505 | % 50l I
506 \ o, 507 0 2 509 |
507 / N 0 505 505 b 510
508 \ M 0 0 50k 5 ' ' ]
509 \ % 510 0 506 2
510 / % 511 0 507 N ] ]
511 | M 0 508 508 5
GROUP SORT LTAB
Ch GChain | GSLink | GNLink Sortl Sortr LGroup| LSort
0 0 0 0 0 0 0 0 o ) 0
1 3 2 0 1 1 1 1 1 0
9, 509 in 0 2 0 0 0 2
T 3 3
N 510 5 0 n I
M 511 0 0 5
6
T
)

Figure B-15. Step 14 of Optimization

GCHECK was applled to GROUPh, the first successor to GROUPE. Stroke507 in
GROUP3 (the other successor to GROUP2) was marked as identical to stroke510
in GROUPh. G-ROUP3 was merged with GROUPA, and entry3 of the GROUP teble is
now dead (there are no pointers to it). The group character of GROUPh was

changed from "o_," to "N" because GROUP,'s character was "N".

2 3

100



DICT DICTE
Feature Def SLink NLink DGLink DGroup DEQ DMark
o [T S Agj;J
1 . . 0 0
2 | ! 1 509 0 1
3 / B> 7mbdé”_~7‘70 N 1
% , 77
50L \ M 0 0 o 5 508
sos | | | % | so» | o 0 b
506 \ % 507 0 0 2 509
507 /I n | o | 505 || so0s i 510
508 [\ M o ) 50k 5
509 |\ i 510 0 506 2
s10 |/ % 511 0 507 4
511 | M 0 508 508 5
GROUP SORT LTAB
r— hCh GChain GSLink | GNLink Sortl Sortr LGroup LSort
0| _o0 0 0 0 ) 0 0 0 0 0 0
1 1 3 2 0 1 1 1 1 1 0
2 %2 509 I 0 2 0 0 2
3 W//W///////V////A/////A 3 3
b N 510 5 0 i I
5 M 511 0 ) 5
6
T
8
Figure B-16. Step 15 of Optimization
GCHECK was applied to GROUPS. Str°ke50h was marked as identical to Str°ke508‘

GCHECK has now been applied to all groups in the tree.

101




U W N O

DICT DICTE

Feature Derf SLink NLink || DGLink DGroup DEQ IMark
. Z
1 0 0
2 | 1 509 1
3 / 1 509 0 2 1
7
504 \ M o} o] 5 508
505 | % 50l 0 i
506 \ %2 507 0 0 2 509 1
507 / N 0 505 505 4 510
508 \ M 0 0 50k 5
509 \ % 510 o || s06 2
510 / ) 511 0 507 i
511 | M 0 508 508 5
GROUP SORT LTAB
Ch GChain | GSLink GNLink Sortl Sortr L;Group LSort
0 0 0 0 0 0 0 0 0 0
1 3 2 0 1 1 1 1 0
% 509 4 0 2 0 0 2
S 3 3
N 510 5 o L L
M 511 0 0 5
6
T
8

Figure B-17. Step 16 of Optimization

Procedure RELINK was applied to GROUPl. Stroke3 in this group was redefined
from.'b2” to the group character "1". The dictionary successor chain to
members of GROUPl 509 5067

stroke509, was not included in the successor chaln, but was marked for deletion.

The SLinks of both members of GROUP

contains only stroke ; stroke which is identical to

1 point to the common successor chain.

102



(SN i e

DICTE

Feature Def

DGroup DEQ

| . . 0 0
1 1 509 0 0 1
/] 1 ] 509 o 2 1

M

RELINK was applied to GROUPe. The

contains stroke and

505

StrOkGBlO'

i1s marked for deletion.

Stroke 7 which is identical to stroke

50

103

2

504 N M 0 o 0 5 508
sos | | | % | sos | 510 0 4
506 \ % 505 0 0 2 509 1
507 / N o] 505 505 L 510 1
508 \ M 0 0 504 5
59 | N_} %2 | 505 0 506 2
510 / % 511 0 507 s
511 i M | o 508 508 5
GROUP SORT LTAB
ﬂCh GChain GSLink GNLink Sortl Sortr LGroup | LSort
0 0 0 0 0 0| 0 0 0 0 0
1 1 3 2 0 1 . 0 1 1 0
2 % 509 k4 o} 2 o) 0 0 2
Y 4 ry
s Wpyppowzznzz72z2777 3 3
N N 510 5 0 b N
5 M 511 o 0 5
6
T
8
Figure B-18. Step 17 of Optimization
dictionary successor chain to GROUP, members

510°



50k
505
506
507
508
509
510
511

w N =~ o

DICT

DICTE

Feature

NLink DGLink

DGroup

DEQ

DMark

Figure B-19.

GROUP SORT
Ch GChain | GSLink | GNLink Sortl Sortr

0 0 0 0 0 0 0 0
1 1 3 2 o 1 1
2 02 509 b (o] 2 (o] o]
3 W77 % 3
4 N 510 5 0 4
5 M 511 0 0 5

6

T

8

Step 18 of Optimization

= w N O

LTAB

LGroup

LSort

RELINK was applied to GROUPh. Both members of GROUPA (strokeSIO and Str°ke505)

were redefined from "02" to the group character "N". The dictionary successor

chain which is common to both s’crokes:LO and stroke505 contains strokeso8 and

and stroke5ll. Stroke

50k

, identical to stroke508, was marked for deletion.

RELINK was then applied to GROUPS. The successor chain for its members is

empty. All groups have been relinked; processing of this dictionary family is
completed.

104




DICT DICTE
Feature| Def SLink NLink || DGLink DGroup DEQ DMark
0
1 . . o 0 ) 1
2 | 1 509 0 0 1
3 / 1 509 0 2
7
50 \ M 0 0 ) 5 508 1
505 ! N 508 510 0 L
506 \ % 505 0 0 2 509
507 / N 508 505 505 4 510
508 \ M 0 511 50k 5
509 \ % 505 0 506 2
510 / N 508 o 507 L
511 | M 0 0 508 5
DICT SORT LTAB
Ch GChain GSLink GNLink Sortl Sortr LGroup | LSort
0 0 0 0 0 0 0 0 ) ) 0
1 1 o 0 1 0 o ) 1 1 )
2 2 2
3 3 3
4 L 4
5 5
6
T
8
Figure B-20. Step 19 of Optimization

Processing of the next dlctionary family has begun.
S'brokel is the only member of this group.

from the first-level SORT section.

105

A new GROUP, was formed

1




DICT DICTE

Feature Def SLink | NLink |{DGLink DGroup DEQ DMark l
0
1 0 ) ) 1
2 ] 1 509 0 1
3 / 509 0 1
7 7 7
504 \ M 0 0 5 508 1
505 i N 508 510 0 L
506 \ % 505 0 2 509
507 / N 508 505 505 b 510
508 \ M 0 511 50k 5
509 \ ) 505 0 506 2
510 / N 508 0 507 L
511 | M 0 0 508 5
GROUP SORT LTAB
Ch GChain GSLink [ GNLink Sortl Sortr LGroup | LSort
0 ) 0 0 0 0 0 0 0 0 0 0
1 1 o) ) 1 0 0 1 1 )
2 2 0 ) 0 2 1
3 3 3
L L L
5 5
6
T
8

Figure B-21. Step 20 of Optimization

A second-level SORT section was made by applying DTREE to strokel, the only
member of GROUPl. The SORT section is empty, and the new group tree is complete.
Because G-ROUPl has no successor groups, GIREE and RELINK are not operated, and
processing of the second family is complete. The first-level SORT section is
also empty, so there are no more dictionary families to process.

106



Vo W N = o

DICT DICTE
Feature Def SLink NLink DGLink DGroup DEQ DMark !
0
1 . 0 0
2 | 1 509 o
3 / 1 509 0
Z 7
50k 77
05 2 % ///
506 270772
507 | N 508 510
508 \ M ) 511
509 \ % 507
510 / N 508
511 | M 0
GROUP SORT LTAB
Ch GChain G3Link GNLink Sortl Sortr LGroup LSort
0 0
1 1
2 2
3 3
L I
5
6
T
8
Figure B-22. Final Result of Optimization
Procedure COMPACT has been operated. StrOReSOM’ Str°ke506 and strokeSOT'were

deleted.

which pointed to Str°ke505’ now points to StrOkeSOT'

Strokeso5

was moved down and became stroke

107

507"

The SLink of stroke

509’

VYT A



(last page)

ADDENDUM G: NEW TECHNOLOGY

It is difficult to say what, in particular, about this program lies within
the realm of new technology. Rather than specific algorithms or solutions
te pmarticular problems, it is the general approach that is unique--the
combination of existing methodology that is new.

At the actual working level of the program, two things in particular are
different from earlier approaches to character recognition. One is the feature-
extraction technique, including corner-detection; the other is the use of the
dictionary to provide separation between adjacent characters, instead of some
other measure.

108 NASA-Langley, 1969 ~— §  CR-12&



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D. C. 20546
OFFICIAL BUSINESS

POSTAGE AND FEES
NATIONAL AERONAUTI
SPACE ADMINISTRAT
FIRST CLASS MAIL

If Undeliverable (Sect

e POSTMASTER: Postal Manual) Do N¢

“The aeronantical and space activities of the United States shall be

condrcted so as to contribute . .

. to the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Adminisiration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limired distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNIQAE TRANSLATIONS: Information
published in a foreign langnage considered
to merit NASA distribution in English,

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monogtaphs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



